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SQUARE INEQUALITY AND STRONG ORDER RELATION
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Abstract. It is well-known that for Hilbert space linear operators 0 ≤ A and
0 ≤ C, inequality C ≤ A does not imply C2 ≤ A2. We introduce a strong order
relation 0 ≤ B ≪ A, which guarantees that C2 ≤ B1/2AB1/2 for all 0 ≤ C ≤
B, and that C2 ≤ A2 when B commutes with A. Connections of this approach
with the arithmetic-geometric mean inequality of Bhatia–Kittaneh as well as
the Kantorovich constant of A are mentioned.

1. Introduction and theorem

Let B(H) denote the space of bounded linear operators on a Hilbert space H.
Throughout the paper, a capital letter means an operator in B(H). The order
relation A ≥ B or equivalently B ≤ A for A, B ∈ B(H) means that both A
and B are selfadjoint and A−B is positive (positive semi-definite for matrices).
Therefore A ≥ 0 means that A is positive. Further, A > 0 means that A ≥ 0 and
A is invertible, or equivalently A ≥ µI for some µ > 0, where I is the identity
operator in B(H).

It is well-known that 0 ≤ C ≤ A does not imply C2 ≤ A2 in general. We look
for a condition on A and B, which guarantees that

0 ≤ C ≤ B =⇒ C2 ≤ A2.
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Let us introduce a strong order relation B ≪ A for 0 ≤ A, B as

B ≪ A ⇐⇒ PBP ≤ A for all projection P. (1.1)

Theorem 1.1. If 0 ≤ C ≤ B ≪ A, then C2 ≤ B1/2AB1/2 and C2 ≤ A2

whenever AB = BA.

Proof. Inequality 0 ≤ C ≤ B is characterized by the relation

C = B1/2DB1/2 for some 0 ≤ D ≤ I. (1.2)

Since each 0 ≤ D ≤ I can be approximated in norm by convex combinations of
projections, and since the map D 7−→ DBD is convex in the sense that

{λD1 + (1− λ)D2}B{λD1 + (1− λ)D2}
≤ λD1BD1 + (1− λ)D2BD2 for all 0 ≤ λ ≤ 1

we can see from (1.1) and (1.2) that

C2 = B1/2 · (DBD) ·B1/2 ≤ B1/2AB1/2.

Further, B1/2AB1/2 ≤ A2 when AB = BA. �

2. Strong order relation

It is immediate from definition (1.1) that

0 ≤ C ≤ B ≪ A =⇒ C ≪ A, (2.1)

and

0 ≤ Bj ≪ Aj (j = 1, 2)

=⇒ α1B1 + α2B2 ≪ α1A1 + α2A2 for all α1, α2 ≥ 0.

The following assertion can be verified easily

0 ≤ A ≪ A ⇐⇒ A = αI for some α ≥ 0.

A little non-trivial fact is that since the square-root map 0 ≤ X 7−→ X1/2 is
order-preserving (see [4, p.127])

0 ≤ B ≪ A =⇒ B1/2 ≪ A1/2.

This can be seen as follows: Since

PB1/2P ≤ (PBP )1/2

for all B ≥ 0 and all projections P , we can conclude that

0 ≤ B ≪ A =⇒ PB1/2P ≤ (PBP )1/2 ≤ A1/2

=⇒ B1/2 ≪ A1/2.

To see further properties of the strong order relation, given a projection P , let
us consider two maps from B(H) to B(G) with G = ran(P ), the range space of
P . First define (P)X by

(P)X := PXP for all X ∈ B(H)
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and second [P]X by

[P]X := PXP − (PXP⊥) · (P⊥XP⊥)−1 · (P⊥XP ),

where P⊥ := I − P.
The map (P) is defined for all X while [P] is defined only when P⊥XP⊥

is invertible in B(G⊥) where G⊥ is the ortho-complement of G, or equivalently
G⊥ = ran(P⊥).

See [1] for more details about the map [P]. Sometimes we will abuse (P)X and
[P]X as if they are operators in B(H).

It is obvious that, with IG the identity operator in B(G),

µI ≤ A ≤ λI =⇒ µIG ≤ (P)A ≤ λIG. (2.2)

A significant result is the following.

Theorem 2.1. For all A > 0 and all projections P ,

([P]A)−1 = (P)(A−1) and 0 ≤ [P]A ≤ A.

Proof. Along the orthogonal decomposition H = G ⊕ G⊥, write

A =

[
A11 A12

A21 A22

]
where A11 = PAP, A12 = PAP⊥, A21 = P⊥AP and A22 = P⊥AP⊥.

Everything in the assertion comes from the following decomposition:

A =

[
IG A12A

−1
22

0 IG⊥

]
·
[
A11 − A12A

−1
22 A21 0

0 A22

]
·
[

IG 0
A−1

22 A21 IG⊥

]

=

[
IG A12A

−1
22

0 IG⊥

]
·
[
[P]A 0

0 (P⊥)A

]
·
[

IG 0
A−1

22 A21 IG⊥

]
and the fact that both block operator matrices[

IG A12A
−1
22

0 IG⊥

]
and

[
IG 0

A−1
22 A21 IG⊥

]
are invertible with respective inverses[

IG A12A
−1
22

0 IG⊥

]−1

=

[
IG −A12A

−1
22

0 IG⊥

]
and [

IG 0
A−1

22 A21 IG⊥

]−1

=

[
IG 0

−A−1
22 A21 IG⊥

]
.

In fact

A−1 =

[
IG 0

−A−1
22 A21 IG⊥

]
·
[
([P]A)−1 0

0 ((P⊥)A)−1

]
·
[
IG −A12A

−1
22

0 IG⊥

]
,

and

A ≥
[
IG A12A

−1
22

0 IG⊥

]
·
[
[P]A 0

0 0

]
·
[

IG 0
A−1

22 A21 IG⊥

]
= [P]A.
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Corresponding to (2.2) we have

µI ≤ A ≤ λI =⇒ µIG ≤ [P]A ≤ λIG. (2.3)

Corollary 2.2. For A, B > 0,

B ≪ A ⇐⇒ (P)B ≤ [P]A for all projection P

⇐⇒ A−1 ≪ B−1.

3. examples

Given A with µI ≤ A ≤ λI for some 0 < µ < λ, we try to find reasonable
0 ≤ B of the form B = αI −βA−1 with α, β ≥ 0 or = aA+ b with a ≥ 0 and real
b for which B ≪ A.

Theorem 3.1. Let µI ≤ A ≤ λI with 0 < µ < λ and α, β ≥ 0. Then validity of
0 ≤ α− β

t
≤ t for all t ∈ [µ, λ] implies that αI − βA−1 ≪ A.

Proof. Given a projection P , let X := [P]A. Since by (2.3) µIG ≤ X ≤ λIG with
G = ran(P ), the assumption implies

0 ≤ αIG − βX−1 ≤ X.

Since X−1 = (P)(A−1) by Theorem 2.1 , considering X and X−1 as operators in
B(H) we have

P (αI − βA−1)P ≤ [P]A ≤ A,

which is just the assertion. �

Suppose that µI ≤ A ≤ λI with 0 < µ < λ and that for α, β ≥ 0

0 ≤ α− β

t
≤ t for all t ∈ [µ, λ],

or equivalently

αµ ≤ β and h(t) := t2 − αt + β ≥ 0 for all t ∈ [µ, λ]. (3.1)

In this case, define a function fα,β(t) by

fα,β(t) := α− β

t
for t ∈ [µ, λ]. (3.2)

Next determine a ≥ 0 and real b by the relations

aµ + b = α− β

µ
and aλ + b = α− β

λ
, (3.3)

and define an affine function gα,β(t) by

gα,β(t) := at + b for t ∈ [µ, λ]. (3.4)

Corollary 3.2. Suppose that (3.1) is satisfied and that fα,β(t) and gα,β(t) are
defined according to (3.2) and (3.3) respectively. Then

0 ≤ gα,β(A) ≤ fα,β(A) ≪ A, so that gα,β(A) ≪ A.
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Proof. Since fα,β(t) is concave by (3.2) and gα,β(t) is affine by (3.4), and by (3.3)

gα,β(µ) = fα,β(µ) and gα,β(λ) = fα,β(λ)

we can conclude that gα,β(t) ≤ fα,β(t) on [µ, λ]. Then via functional calculus and
by Theorem 3.1 and implication (2.1)

0 ≤ gα,β(A) ≤ fα,β(A) ≪ A, so that gα,β(A) ≪ A.

�

In the remaining part of this section, under the assumption on a pair (α, β) as
in Corollary 3.2, we will investigate when the extremal cases as fα,β(µ) = µ or
fα,β(λ) = λ occur.

Proposition 3.3. If fα,β(µ) = µ, then µ ≤ α ≤ 2µ and β = (α−µ)µ. Conversely
if µ ≤ α ≤ 2µ, then the pair (α, β) with β := (α − µ)µ satisfies condition (3.1)
and fα,β(µ) = µ.

Proof. Since the assumption µ = fα,β(µ) = α − β
µ

implies β = (α − µ)µ, so that

α ≥ µ. Since by (3.1)

h(t) = (t− µ){t− (α− µ)} ≥ 0 for all t ∈ [µ, λ]

we have α− µ ≤ µ, that is, α ≤ 2µ.
Conversely, suppose that µ ≤ α ≤ 2µ. Define β := (α − µ)µ. Clearly β ≥ αµ

and fα,β(µ) = µ. Since α − µ ≤ µ, we have h(t) ≥ 0 on [µ, λ], so that (3.1) is
satisfied. �

We notice the following concrete examples.

(i) When α = 2µ and β = µ2,

fα,β(t) = µ(2− µ

t
) and gα,β(t) =

µ

λ
{t + (λ− µ)}.

(ii) When α = µ and β = 0, fα,β(t) = gα,β(t) = µ.

Proposition 3.4. The requirement fα,β(λ) = λ is possible only when λ ≤ 2µ or

equivalently 2λ ≤ λ2

λ−µ
and

2λ ≤ α ≤ λ2

λ− µ
and β = λ(α− λ). (3.5)

Conversely when λ ≤ 2µ, any pair (α, β) with (3.5) satisfies condition (3.1) and
fα,β(λ) = λ.

Proof. The requirement fα,β(λ) = λ implies β = λ(α − λ). On the other hand,
condition (3.1)

(t− λ){t− (α− λ)} ≥ 0 for all t ∈ [µ, λ]

implies α − λ ≥ λ, whence α ≥ 2λ. Again, since by (3.1) αµ ≥ β = λ(α − λ),

we have α ≤ λ2

λ−µ
, so that

2λ ≤ α ≤ λ2

λ− µ
.

The proof of the converse direction is similar. �
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We notice the following concrete examples.

(iii) Let 0 < λ ≤ 2µ. When α := λ2

λ−µ
and β := λ2µ

λ−µ
,

fα,β(t) =
λ2

λ− µ

{
1− µ

t

}
and gα,β(t) =

λ

λ− µ
{t− µ}.

(iv) Let 0 < λ ≤ 2µ. When α := 2λ and β := λ2,

fα,β(t) = λ
{

2− λ

t

}
and gα,β(t) =

λ

µ

{
t− (λ− µ)

}
.

4. Connection with known results

Bhatia and Kittaneh [3] established a remarkable matrix arithmetic-geometric
mean inequality. It says that for any n× n matrices A, C ≥ 0 and any unitarily
invariant norm ||| · ||| (see [2, p.91] for definition)

|||AC||| ≤ |||{A + C

2
}2|||.

Taking the operator norm, this inequality is extended to the case of Hilbert space
operators. Taking A−1 in place of A, this theorem for the operator norm says

C + A−1 ≤ 2 · I =⇒ A−1C2A−1 ≤ I =⇒ C2 ≤ A2,

or

0 ≤ C ≤ 2 · I − A−1 =⇒ C2 ≤ A2.

Therefore this corresponds to the case that α = 2, β = 1, µ = 1
2

and any number
λ with λI ≥ A.

Suppose that 0 < A has maximum spectrum λ and minimum spectrum µ. The
numbers λ and µ can be expressed in terms of norms related to A. In fact

λ = ‖A‖ and µ = ‖A−1‖−1. (4.1)

The number

κA :=
(λ + µ)2

4λµ
(4.2)

is called the Kantorvich constant of A. Then it is clear from(4.1) and (4.2) that

κA =
(‖A‖ · ‖A−1‖+ 1)2

4‖A‖ · ‖A−1‖
.

The following fact has been known (see [4, Chapter III] for more detail):

Theorem 4.1. For A > 0,

0 ≤ C ≤ A =⇒ C2 ≤ κA · A2.

Let us show how this can be incorporated into our theory. The following
proposition can be checked immediately.
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Proposition 4.2. When α = 4λµ
λ+µ

and β = 4λ2µ2

(λ+µ)2
the pair (α, β) satisfies condi-

tion (3.1) and

fα,β(t) =
4λµ

λ + µ

{
1− λµ

(λ + µ)t

}
and gα,β(t) =

4λµ

(λ + µ)2
· t = κ−1

A t.

Therefore k−1
A · A ≪ A.

Now Theorem 4.1 is deduced from Proposition 4.2 and Theorem 1.1 as follows:

0 ≤ C ≤ A =⇒ κ−1
A C ≤ κ−1

A A ≪ A

=⇒ κ−2
A C2 ≤ κ−1

A A2 =⇒ C2 ≤ κA · A2.

Notice that the above argument shows that

0 ≤ C ≤ κ
−1/2
A · A =⇒ C2 ≤ A2.
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