Adv. Oper. Theory 1 (2016), no. 1, 1-7
http://doi.org/10.22034/aot.1610.1035
ISSN: 2538-225X (electronic)
http://aot-math.org

SQUARE INEQUALITY AND STRONG ORDER RELATION

TSUYOSHI ANDO

This paper is dedicated to the memory of late Professor Takayuki Furuta

Communicated by M. S. Moslehian

Abstract

It is well-known that for Hilbert space linear operators $0 \leq A$ and $0 \leq C$, inequality $C \leq A$ does not imply $C^{2} \leq A^{2}$. We introduce a strong order relation $0 \leq B \lll A$, which guarantees that $C^{2} \leq B^{1 / 2} A B^{1 / 2}$ for all $0 \leq C \leq$ B, and that $C^{2} \leq A^{2}$ when B commutes with A. Connections of this approach with the arithmetic-geometric mean inequality of Bhatia-Kittaneh as well as the Kantorovich constant of A are mentioned.

1. Introduction and theorem

Let $B(\mathcal{H})$ denote the space of bounded linear operators on a Hilbert space \mathcal{H}. Throughout the paper, a capital letter means an operator in $B(\mathcal{H})$. The order relation $A \geq B$ or equivalently $B \leq A$ for $A, B \in B(\mathcal{H})$ means that both A and B are selfadjoint and $A-B$ is positive (positive semi-definite for matrices). Therefore $A \geq 0$ means that A is positive. Further, $A>0$ means that $A \geq 0$ and A is invertible, or equivalently $A \geq \mu I$ for some $\mu>0$, where I is the identity operator in $B(\mathcal{H})$.

It is well-known that $0 \leq C \leq A$ does not imply $C^{2} \leq A^{2}$ in general. We look for a condition on A and B, which guarantees that

$$
0 \leq C \leq B \Longrightarrow C^{2} \leq A^{2}
$$

[^0]Let us introduce a strong order relation $B \lll A$ for $0 \leq A, B$ as

$$
\begin{equation*}
B \lll A \Longleftrightarrow P B P \leq A \text { for all projection } P \tag{1.1}
\end{equation*}
$$

Theorem 1.1. If $0 \leq C \leq B \lll A$, then $C^{2} \leq B^{1 / 2} A B^{1 / 2}$ and $C^{2} \leq A^{2}$ whenever $A B=B A$.

Proof. Inequality $0 \leq C \leq B$ is characterized by the relation

$$
\begin{equation*}
C=B^{1 / 2} D B^{1 / 2} \text { for some } 0 \leq D \leq I \tag{1.2}
\end{equation*}
$$

Since each $0 \leq D \leq I$ can be approximated in norm by convex combinations of projections, and since the map $D \longmapsto D B D$ is convex in the sense that

$$
\begin{aligned}
& \left\{\lambda D_{1}+(1-\lambda) D_{2}\right\} B\left\{\lambda D_{1}+(1-\lambda) D_{2}\right\} \\
& \quad \leq \lambda D_{1} B D_{1}+(1-\lambda) D_{2} B D_{2} \text { for all } 0 \leq \lambda \leq 1
\end{aligned}
$$

we can see from (1.1) and (1.2) that

$$
C^{2}=B^{1 / 2} \cdot(D B D) \cdot B^{1 / 2} \leq B^{1 / 2} A B^{1 / 2}
$$

Further, $B^{1 / 2} A B^{1 / 2} \leq A^{2}$ when $A B=B A$.

2. Strong order relation

It is immediate from definition (1.1) that

$$
\begin{equation*}
0 \leq C \leq B \lll A \quad \Longrightarrow \quad C \ll A, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{aligned}
0 \leq & B_{j} \lll A_{j}(j=1,2) \\
& \Longrightarrow \alpha_{1} B_{1}+\alpha_{2} B_{2} \lll \alpha_{1} A_{1}+\alpha_{2} A_{2} \text { for all } \alpha_{1}, \alpha_{2} \geq 0 .
\end{aligned}
$$

The following assertion can be verified easily

$$
0 \leq A \lll A \quad \Longleftrightarrow \quad A=\alpha I \text { for some } \alpha \geq 0
$$

A little non-trivial fact is that since the square-root map $0 \leq X \longmapsto X^{1 / 2}$ is order-preserving (see [4, p.127])

$$
0 \leq B \lll A \quad \Longrightarrow \quad B^{1 / 2} \lll A^{1 / 2}
$$

This can be seen as follows: Since

$$
P B^{1 / 2} P \leq(P B P)^{1 / 2}
$$

for all $B \geq 0$ and all projections P, we can conclude that

$$
\begin{aligned}
0 \leq B \lll A & \Longrightarrow P B^{1 / 2} P \leq(P B P)^{1 / 2} \leq A^{1 / 2} \\
& \Longrightarrow B^{1 / 2} \lll A^{1 / 2} .
\end{aligned}
$$

To see further properties of the strong order relation, given a projection P, let us consider two maps from $B(\mathcal{H})$ to $B(\mathcal{G})$ with $\mathcal{G}=\operatorname{ran}(P)$, the range space of P. First define ($\mathbf{P}) X$ by

$$
(\mathbf{P}) X:=P X P \text { for all } X \in \mathcal{B}(\mathcal{H})
$$

and second $[\mathbf{P}] X$ by

$$
[\mathbf{P}] X:=P X P-\left(P X P^{\perp}\right) \cdot\left(P^{\perp} X P^{\perp}\right)^{-1} \cdot\left(P^{\perp} X P\right)
$$

where $P^{\perp}:=I-P$.
The map (\mathbf{P}) is defined for all X while $[\mathbf{P}]$ is defined only when $P^{\perp} X P^{\perp}$ is invertible in $B\left(\mathcal{G}^{\perp}\right)$ where \mathcal{G}^{\perp} is the ortho-complement of \mathcal{G}, or equivalently $\mathcal{G}^{\perp}=\operatorname{ran}\left(P^{\perp}\right)$.

See [1] for more details about the map $[\mathbf{P}]$. Sometimes we will abuse $(\mathbf{P}) X$ and $[\mathbf{P}] X$ as if they are operators in $B(\mathcal{H})$.

It is obvious that, with $I_{\mathcal{G}}$ the identity operator in $B(\mathcal{G})$,

$$
\begin{equation*}
\mu I \leq A \leq \lambda I \quad \Longrightarrow \quad \mu I_{\mathcal{G}} \leq(\mathbf{P}) A \leq \lambda I_{\mathcal{G}} \tag{2.2}
\end{equation*}
$$

A significant result is the following.
Theorem 2.1. For all $A>0$ and all projections P,

$$
([\mathbf{P}] A)^{-1}=(\mathbf{P})\left(A^{-1}\right) \text { and } 0 \leq[\mathbf{P}] A \leq A
$$

Proof. Along the orthogonal decomposition $\mathcal{H}=\mathcal{G} \oplus \mathcal{G}^{\perp}$, write

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where $A_{11}=P A P, A_{12}=P A P^{\perp}, A_{21}=P^{\perp} A P$ and $A_{22}=P^{\perp} A P^{\perp}$.
Everything in the assertion comes from the following decomposition:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
I_{\mathcal{G}} & A_{12} A_{22}^{-1} \\
0 & I_{\mathcal{G}}{ }^{\perp}
\end{array}\right] \cdot\left[\begin{array}{cc}
A_{11}-A_{12} A_{22}^{-1} A_{21} & 0 \\
0 & A_{22}
\end{array}\right] \cdot\left[\begin{array}{cc}
I_{\mathcal{G}} & 0 \\
A_{22}^{-1} A_{21} & I_{\mathcal{G}^{\perp}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{\mathcal{G}} & A_{12} A_{22}^{-1} \\
0 & I_{\mathcal{G}^{\perp}}
\end{array}\right] \cdot\left[\begin{array}{cc}
{[\mathbf{P}] A} & 0 \\
0 & \left(\mathbf{P}^{\perp}\right) A
\end{array}\right] \cdot\left[\begin{array}{cc}
I_{\mathcal{G}} & 0 \\
A_{22}^{-1} A_{21} & I_{\mathcal{G}^{\perp}}
\end{array}\right]
\end{aligned}
$$

and the fact that both block operator matrices

$$
\left[\begin{array}{cc}
I_{\mathcal{G}} & A_{12} A_{22}^{-1} \\
0 & I_{\mathcal{G}^{\perp}}
\end{array}\right] \text { and }\left[\begin{array}{cc}
I_{\mathcal{G}} & 0 \\
A_{22}^{-1} A_{21} & I_{\mathcal{G}^{\perp}}
\end{array}\right]
$$

are invertible with respective inverses

$$
\left[\begin{array}{cc}
I_{\mathcal{G}} & A_{12} A_{22}^{-1} \\
0 & I_{\mathcal{G}^{\perp}}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I_{\mathcal{G}} & -A_{12} A_{22}^{-1} \\
0 & I_{\mathcal{G}^{\perp}}
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
I_{\mathcal{G}} & 0 \\
A_{22}^{-1} A_{21} & I_{\mathcal{G}^{\perp}}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I_{\mathcal{G}} & 0 \\
-A_{22}^{-1} A_{21} & I_{\mathcal{G}^{\perp}}
\end{array}\right] .
$$

In fact

$$
A^{-1}=\left[\begin{array}{cc}
I_{\mathcal{G}} & 0 \\
-A_{22}^{-1} A_{21} & I_{\mathcal{G}^{\perp}}
\end{array}\right] \cdot\left[\begin{array}{cc}
([\mathbf{P}] A)^{-1} & 0 \\
0 & \left(\left(\mathbf{P}^{\perp}\right) A\right)^{-1}
\end{array}\right] \cdot\left[\begin{array}{cc}
I_{\mathcal{G}} & -A_{12} A_{22}^{-1} \\
0 & I_{\mathcal{G}^{\perp}}
\end{array}\right]
$$

and

$$
A \geq\left[\begin{array}{cc}
I_{\mathcal{G}} & A_{12} A_{22}^{-1} \\
0 & I_{\mathcal{G}^{\perp}}
\end{array}\right] \cdot\left[\begin{array}{cc}
{[\mathbf{P}] A} & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
I_{\mathcal{G}} & 0 \\
A_{22}^{-1} A_{21} & I_{\mathcal{G}^{\perp}}
\end{array}\right]=[\mathbf{P}] A .
$$

Corresponding to (2.2) we have

$$
\begin{equation*}
\mu I \leq A \leq \lambda I \quad \Longrightarrow \quad \mu I_{\mathcal{G}} \leq[\mathbf{P}] A \leq \lambda I_{\mathcal{G}} . \tag{2.3}
\end{equation*}
$$

Corollary 2.2. For $A, B>0$,

$$
\begin{aligned}
B \lll A & \Longleftrightarrow(\mathbf{P}) B \leq[\mathbf{P}] A \text { for all projection } P \\
& \Longleftrightarrow A^{-1} \lll B^{-1} .
\end{aligned}
$$

3. EXAMPLES

Given A with $\mu I \leq A \leq \lambda I$ for some $0<\mu<\lambda$, we try to find reasonable $0 \leq B$ of the form $B=\alpha I-\beta A^{-1}$ with $\alpha, \beta \geq 0$ or $=a A+b$ with $a \geq 0$ and real b for which $B \lll A$.

Theorem 3.1. Let $\mu I \leq A \leq \lambda I$ with $0<\mu<\lambda$ and $\alpha, \beta \geq 0$. Then validity of $0 \leq \alpha-\frac{\beta}{t} \leq t$ for all $t \in[\mu, \lambda]$ implies that $\alpha I-\beta A^{-1} \lll A$.
Proof. Given a projection P, let $X:=[\mathbf{P}] A$. Since by (2.3) $\mu I_{\mathcal{G}} \leq X \leq \lambda I_{\mathcal{G}}$ with $\mathcal{G}=\operatorname{ran}(P)$, the assumption implies

$$
0 \leq \alpha I_{\mathcal{G}}-\beta X^{-1} \leq X
$$

Since $X^{-1}=(\mathbf{P})\left(A^{-1}\right)$ by Theorem 2.1, considering X and X^{-1} as operators in $B(\mathcal{H})$ we have

$$
P\left(\alpha I-\beta A^{-1}\right) P \leq[\mathbf{P}] A \leq A
$$

which is just the assertion.
Suppose that $\mu I \leq A \leq \lambda I$ with $0<\mu<\lambda$ and that for $\alpha, \beta \geq 0$

$$
0 \leq \alpha-\frac{\beta}{t} \leq t \text { for all } t \in[\mu, \lambda]
$$

or equivalently

$$
\begin{equation*}
\alpha \mu \leq \beta \quad \text { and } \quad h(t):=t^{2}-\alpha t+\beta \geq 0 \quad \text { for all } t \in[\mu, \lambda] . \tag{3.1}
\end{equation*}
$$

In this case, define a function $f_{\alpha, \beta}(t)$ by

$$
\begin{equation*}
f_{\alpha, \beta}(t):=\alpha-\frac{\beta}{t} \quad \text { for } t \in[\mu, \lambda] . \tag{3.2}
\end{equation*}
$$

Next determine $a \geq 0$ and real b by the relations

$$
\begin{equation*}
a \mu+b=\alpha-\frac{\beta}{\mu} \quad \text { and } \quad a \lambda+b=\alpha-\frac{\beta}{\lambda}, \tag{3.3}
\end{equation*}
$$

and define an affine function $g_{\alpha, \beta}(t)$ by

$$
\begin{equation*}
g_{\alpha, \beta}(t):=a t+b \quad \text { for } t \in[\mu, \lambda] . \tag{3.4}
\end{equation*}
$$

Corollary 3.2. Suppose that (3.1) is satisfied and that $f_{\alpha, \beta}(t)$ and $g_{\alpha, \beta}(t)$ are defined according to (3.2) and (3.3) respectively. Then

$$
0 \leq g_{\alpha, \beta}(A) \leq f_{\alpha, \beta}(A) \lll A, \text { so that } g_{\alpha, \beta}(A) \lll A \text {. }
$$

Proof. Since $f_{\alpha, \beta}(t)$ is concave by (3.2) and $g_{\alpha, \beta}(t)$ is affine by (3.4), and by (3.3)

$$
g_{\alpha, \beta}(\mu)=f_{\alpha, \beta}(\mu) \quad \text { and } \quad g_{\alpha, \beta}(\lambda)=f_{\alpha, \beta}(\lambda)
$$

we can conclude that $g_{\alpha, \beta}(t) \leq f_{\alpha, \beta}(t)$ on $[\mu, \lambda]$. Then via functional calculus and by Theorem 3.1 and implication (2.1)

$$
0 \leq g_{\alpha, \beta}(A) \leq f_{\alpha, \beta}(A) \lll A, \quad \text { so that } \quad g_{\alpha, \beta}(A) \lll A .
$$

In the remaining part of this section, under the assumption on a pair (α, β) as in Corollary 3.2, we will investigate when the extremal cases as $f_{\alpha, \beta}(\mu)=\mu$ or $f_{\alpha, \beta}(\lambda)=\lambda$ occur.
Proposition 3.3. If $f_{\alpha, \beta}(\mu)=\mu$, then $\mu \leq \alpha \leq 2 \mu$ and $\beta=(\alpha-\mu) \mu$. Conversely if $\mu \leq \alpha \leq 2 \mu$, then the pair (α, β) with $\beta:=(\alpha-\mu) \mu$ satisfies condition (3.1) and $f_{\alpha, \beta}(\mu)=\mu$.
Proof. Since the assumption $\mu=f_{\alpha, \beta}(\mu)=\alpha-\frac{\beta}{\mu}$ implies $\beta=(\alpha-\mu) \mu$, so that $\alpha \geq \mu$. Since by (3.1)

$$
h(t)=(t-\mu)\{t-(\alpha-\mu)\} \geq 0 \text { for all } t \in[\mu, \lambda]
$$

we have $\alpha-\mu \leq \mu$, that is, $\alpha \leq 2 \mu$.
Conversely, suppose that $\mu \leq \alpha \leq 2 \mu$. Define $\beta:=(\alpha-\mu) \mu$. Clearly $\beta \geq \alpha \mu$ and $f_{\alpha, \beta}(\mu)=\mu$. Since $\alpha-\mu \leq \mu$, we have $h(t) \geq 0$ on $[\mu, \lambda]$, so that (3.1) is satisfied.

We notice the following concrete examples.
(i) When $\alpha=2 \mu$ and $\beta=\mu^{2}$,

$$
f_{\alpha, \beta}(t)=\mu\left(2-\frac{\mu}{t}\right) \quad \text { and } \quad g_{\alpha, \beta}(t)=\frac{\mu}{\lambda}\{t+(\lambda-\mu)\} .
$$

(ii) When $\alpha=\mu$ and $\beta=0, f_{\alpha, \beta}(t)=g_{\alpha, \beta}(t)=\mu$.

Proposition 3.4. The requirement $f_{\alpha, \beta}(\lambda)=\lambda$ is possible only when $\lambda \leq 2 \mu$ or equivalently $2 \lambda \leq \frac{\lambda^{2}}{\lambda-\mu}$ and

$$
\begin{equation*}
2 \lambda \leq \alpha \leq \frac{\lambda^{2}}{\lambda-\mu} \quad \text { and } \quad \beta=\lambda(\alpha-\lambda) \tag{3.5}
\end{equation*}
$$

Conversely when $\lambda \leq 2 \mu$, any pair (α, β) with (3.5) satisfies condition (3.1) and $f_{\alpha, \beta}(\lambda)=\lambda$.

Proof. The requirement $f_{\alpha, \beta}(\lambda)=\lambda$ implies $\beta=\lambda(\alpha-\lambda)$. On the other hand, condition (3.1)

$$
(t-\lambda)\{t-(\alpha-\lambda)\} \geq 0 \text { for all } t \in[\mu, \lambda]
$$

implies $\alpha-\lambda \geq \lambda$, whence $\alpha \geq 2 \lambda$. Again, since by (3.1) $\alpha \mu \geq \beta=\lambda(\alpha-\lambda)$, we have $\alpha \leq \frac{\lambda^{2}}{\lambda-\mu}$, so that

$$
2 \lambda \leq \alpha \leq \frac{\lambda^{2}}{\lambda-\mu}
$$

The proof of the converse direction is similar.

We notice the following concrete examples.
(iii) Let $0<\lambda \leq 2 \mu$. When $\alpha:=\frac{\lambda^{2}}{\lambda-\mu}$ and $\beta:=\frac{\lambda^{2} \mu}{\lambda-\mu}$,

$$
f_{\alpha, \beta}(t)=\frac{\lambda^{2}}{\lambda-\mu}\left\{1-\frac{\mu}{t}\right\} \quad \text { and } \quad g_{\alpha, \beta}(t)=\frac{\lambda}{\lambda-\mu}\{t-\mu\} .
$$

(iv) Let $0<\lambda \leq 2 \mu$. When $\alpha:=2 \lambda$ and $\beta:=\lambda^{2}$,

$$
f_{\alpha, \beta}(t)=\lambda\left\{2-\frac{\lambda}{t}\right\} \quad \text { and } \quad g_{\alpha, \beta}(t)=\frac{\lambda}{\mu}\{t-(\lambda-\mu)\} .
$$

4. Connection with known results

Bhatia and Kittaneh [3] established a remarkable matrix arithmetic-geometric mean inequality. It says that for any $n \times n$ matrices $A, C \geq 0$ and any unitarily invariant norm $\|\cdot\|$ (see [2, p.91] for definition)

$$
\|A C\| \leq\left\|\left\{\frac{A+C}{2}\right\}^{2}\right\| .
$$

Taking the operator norm, this inequality is extended to the case of Hilbert space operators. Taking A^{-1} in place of A, this theorem for the operator norm says

$$
C+A^{-1} \leq 2 \cdot I \quad \Longrightarrow \quad A^{-1} C^{2} A^{-1} \leq I \quad \Longrightarrow \quad C^{2} \leq A^{2}
$$

or

$$
0 \leq C \leq 2 \cdot I-A^{-1} \quad \Longrightarrow \quad C^{2} \leq A^{2}
$$

Therefore this corresponds to the case that $\alpha=2, \beta=1, \mu=\frac{1}{2}$ and any number λ with $\lambda I \geq A$.

Suppose that $0<A$ has maximum spectrum λ and minimum spectrum μ. The numbers λ and μ can be expressed in terms of norms related to A. In fact

$$
\begin{equation*}
\lambda=\|A\| \quad \text { and } \quad \mu=\left\|A^{-1}\right\|^{-1} . \tag{4.1}
\end{equation*}
$$

The number

$$
\begin{equation*}
\kappa_{A}:=\frac{(\lambda+\mu)^{2}}{4 \lambda \mu} \tag{4.2}
\end{equation*}
$$

is called the Kantorvich constant of A. Then it is clear from(4.1) and (4.2) that

$$
\kappa_{A}=\frac{\left(\|A\| \cdot\left\|A^{-1}\right\|+1\right)^{2}}{4\|A\| \cdot\left\|A^{-1}\right\|} .
$$

The following fact has been known (see [4, Chapter III] for more detail):
Theorem 4.1. For $A>0$,

$$
0 \leq C \leq A \quad \Longrightarrow \quad C^{2} \leq \kappa_{A} \cdot A^{2}
$$

Let us show how this can be incorporated into our theory. The following proposition can be checked immediately.

Proposition 4.2. When $\alpha=\frac{4 \lambda \mu}{\lambda+\mu}$ and $\beta=\frac{4 \lambda^{2} \mu^{2}}{(\lambda+\mu)^{2}}$ the pair (α, β) satisfies condition (3.1) and

$$
f_{\alpha, \beta}(t)=\frac{4 \lambda \mu}{\lambda+\mu}\left\{1-\frac{\lambda \mu}{(\lambda+\mu) t}\right\} \quad \text { and } \quad g_{\alpha, \beta}(t)=\frac{4 \lambda \mu}{(\lambda+\mu)^{2}} \cdot t=\kappa_{A}^{-1} t .
$$

Therefore $k_{A}^{-1} \cdot A \lll A$.
Now Theorem 4.1 is deduced from Proposition 4.2 and Theorem 1.1 as follows:

$$
\begin{aligned}
0 \leq C \leq A & \Longrightarrow \kappa_{A}^{-1} C \leq \kappa_{A}^{-1} A \lll A \\
& \Longrightarrow \kappa_{A}^{-2} C^{2} \leq \kappa_{A}^{-1} A^{2} \Longrightarrow C^{2} \leq \kappa_{A} \cdot A^{2}
\end{aligned}
$$

Notice that the above argument shows that

$$
0 \leq C \leq \kappa_{A}^{-1 / 2} \cdot A \quad \Longrightarrow \quad C^{2} \leq A^{2}
$$

References

1. T. Ando, Schur complements and matrix inequalities: Operator-theoretic approach, pp. 137162, in The Schur complement and its applications, edited by F. Zhang, Springer, New York, 2005.
2. R. Bhatia, Matrix Analysis, Springer, New York-Berlin-Heidelberg, 1997.
3. R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000), 203-211.
4. T. Furuta, Invitation to Linear Operators, Taylor \& Francis, London and New York, 2001.

Hokkaido University (Emeritus), Sapporo 060, Japan
E-mail address: ando@es.hokudai.ac.jp

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Date: Received: Oct. 1, 2016; Accepted: Oct. 23, 2016.
 2010 Mathematics Subject Classification. Primary 47A63; Secondary 47A64.
 Key words and phrases. Square inequality, strong order relation, operator arithmeticgeometric mean inequality, Kantorovich constant.

