

Adv. Oper. Theory 1 (2016), no. 1, 1–7 http://doi.org/10.22034/aot.1610.1035 ISSN: 2538-225X (electronic) http://aot-math.org

SQUARE INEQUALITY AND STRONG ORDER RELATION

TSUYOSHI ANDO

This paper is dedicated to the memory of late Professor Takayuki Furuta

Communicated by M. S. Moslehian

ABSTRACT. It is well-known that for Hilbert space linear operators $0 \leq A$ and $0 \leq C$, inequality $C \leq A$ does not imply $C^2 \leq A^2$. We introduce a strong order relation $0 \leq B \ll A$, which guarantees that $C^2 \leq B^{1/2}AB^{1/2}$ for all $0 \leq C \leq B$, and that $C^2 \leq A^2$ when B commutes with A. Connections of this approach with the arithmetic-geometric mean inequality of Bhatia–Kittaneh as well as the Kantorovich constant of A are mentioned.

1. INTRODUCTION AND THEOREM

Let $B(\mathcal{H})$ denote the space of bounded linear operators on a Hilbert space \mathcal{H} . Throughout the paper, a capital letter means an operator in $B(\mathcal{H})$. The order relation $A \geq B$ or equivalently $B \leq A$ for $A, B \in B(\mathcal{H})$ means that both Aand B are selfadjoint and A - B is positive (positive semi-definite for matrices). Therefore $A \geq 0$ means that A is positive. Further, A > 0 means that $A \geq 0$ and A is invertible, or equivalently $A \geq \mu I$ for some $\mu > 0$, where I is the identity operator in $B(\mathcal{H})$.

It is well-known that $0 \le C \le A$ does not imply $C^2 \le A^2$ in general. We look for a condition on A and B, which guarantees that

$$0 \le C \le B \implies C^2 \le A^2.$$

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Oct. 1, 2016; Accepted: Oct. 23, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63; Secondary 47A64.

Key words and phrases. Square inequality, strong order relation, operator arithmeticgeometric mean inequality, Kantorovich constant.

T. ANDO

Let us introduce a strong order relation $B \ll A$ for $0 \leq A, B$ as

 $B \ll A \iff PBP \le A$ for all projection P. (1.1)

Theorem 1.1. If $0 \leq C \leq B \ll A$, then $C^2 \leq B^{1/2}AB^{1/2}$ and $C^2 \leq A^2$ whenever AB = BA.

Proof. Inequality $0 \le C \le B$ is characterized by the relation

$$C = B^{1/2} D B^{1/2}$$
 for some $0 \le D \le I$. (1.2)

Since each $0 \le D \le I$ can be approximated in norm by convex combinations of projections, and since the map $D \longmapsto DBD$ is convex in the sense that

$$\{\lambda D_1 + (1-\lambda)D_2\}B\{\lambda D_1 + (1-\lambda)D_2\} \\ \leq \lambda D_1BD_1 + (1-\lambda)D_2BD_2 \text{ for all } 0 \leq \lambda \leq 1$$

we can see from (1.1) and (1.2) that

$$C^2 = B^{1/2} \cdot (DBD) \cdot B^{1/2} \le B^{1/2} A B^{1/2}.$$

Further, $B^{1/2}AB^{1/2} \leq A^2$ when AB = BA.

2. Strong order relation

It is immediate from definition (1.1) that

$$0 \le C \le B \lll A \implies C \lll A, \tag{2.1}$$

and

$$0 \le B_j \lll A_j \ (j = 1, 2)$$

$$\implies \alpha_1 B_1 + \alpha_2 B_2 \lll \alpha_1 A_1 + \alpha_2 A_2 \text{ for all } \alpha_1, \alpha_2 \ge 0.$$

The following assertion can be verified easily

 $0 \leq A \lll A \iff A = \alpha I$ for some $\alpha \geq 0$.

A little non-trivial fact is that since the square-root map $0 \leq X \longmapsto X^{1/2}$ is order-preserving (see [4, p.127])

$$0 \le B \lll A \quad \Longrightarrow \quad B^{1/2} \lll A^{1/2}.$$

This can be seen as follows: Since

$$PB^{1/2}P \le (PBP)^{1/2}$$

for all $B \ge 0$ and all projections P, we can conclude that

$$0 \le B \lll A \implies PB^{1/2}P \le (PBP)^{1/2} \le A^{1/2}$$
$$\implies B^{1/2} \lll A^{1/2}.$$

To see further properties of the strong order relation, given a projection P, let us consider two maps from $B(\mathcal{H})$ to $B(\mathcal{G})$ with $\mathcal{G} = \operatorname{ran}(P)$, the range space of P. First define (**P**)X by

$$(\mathbf{P})X := PXP \text{ for all } X \in \mathcal{B}(\mathcal{H})$$

and second $[\mathbf{P}]X$ by

$$[\mathbf{P}]X := PXP - (PXP^{\perp}) \cdot (P^{\perp}XP^{\perp})^{-1} \cdot (P^{\perp}XP),$$

where $P^{\perp} := I - P$.

The map (**P**) is defined for all X while [**P**] is defined only when $P^{\perp}XP^{\perp}$ is invertible in $B(\mathcal{G}^{\perp})$ where \mathcal{G}^{\perp} is the ortho-complement of \mathcal{G} , or equivalently $\mathcal{G}^{\perp} = \operatorname{ran}(P^{\perp})$.

See [1] for more details about the map [**P**]. Sometimes we will abuse (**P**)X and [**P**]X as if they are operators in $B(\mathcal{H})$.

It is obvious that, with $I_{\mathcal{G}}$ the identity operator in $B(\mathcal{G})$,

$$\mu I \le A \le \lambda I \implies \mu I_{\mathcal{G}} \le (\mathbf{P})A \le \lambda I_{\mathcal{G}}.$$
 (2.2)

A significant result is the following.

Theorem 2.1. For all A > 0 and all projections P,

$$([\mathbf{P}]A)^{-1} = (\mathbf{P})(A^{-1}) \text{ and } 0 \le [\mathbf{P}]A \le A.$$

Proof. Along the orthogonal decomposition $\mathcal{H} = \mathcal{G} \oplus \mathcal{G}^{\perp}$, write

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where $A_{11} = PAP$, $A_{12} = PAP^{\perp}$, $A_{21} = P^{\perp}AP$ and $A_{22} = P^{\perp}AP^{\perp}$.

Everything in the assertion comes from the following decomposition:

$$A = \begin{bmatrix} I_{\mathcal{G}} & A_{12}A_{22}^{-1} \\ 0 & I_{\mathcal{G}^{\perp}} \end{bmatrix} \cdot \begin{bmatrix} A_{11} - A_{12}A_{22}^{-1}A_{21} & 0 \\ 0 & A_{22} \end{bmatrix} \cdot \begin{bmatrix} I_{\mathcal{G}} & 0 \\ A_{22}^{-1}A_{21} & I_{\mathcal{G}^{\perp}} \end{bmatrix}$$
$$= \begin{bmatrix} I_{\mathcal{G}} & A_{12}A_{22}^{-1} \\ 0 & I_{\mathcal{G}^{\perp}} \end{bmatrix} \cdot \begin{bmatrix} [\mathbf{P}]A & 0 \\ 0 & (\mathbf{P}^{\perp})A \end{bmatrix} \cdot \begin{bmatrix} I_{\mathcal{G}} & 0 \\ A_{22}^{-1}A_{21} & I_{\mathcal{G}^{\perp}} \end{bmatrix}$$

and the fact that both block operator matrices

$$\begin{bmatrix} I_{\mathcal{G}} & A_{12}A_{22}^{-1} \\ 0 & I_{\mathcal{G}^{\perp}} \end{bmatrix} \text{ and } \begin{bmatrix} I_{\mathcal{G}} & 0 \\ A_{22}^{-1}A_{21} & I_{\mathcal{G}^{\perp}} \end{bmatrix}$$

are invertible with respective inverses

$$\begin{bmatrix} I_{\mathcal{G}} & A_{12}A_{22}^{-1} \\ 0 & I_{\mathcal{G}^{\perp}} \end{bmatrix}^{-1} = \begin{bmatrix} I_{\mathcal{G}} & -A_{12}A_{22}^{-1} \\ 0 & I_{\mathcal{G}^{\perp}} \end{bmatrix}$$

and

$$\begin{bmatrix} I_{\mathcal{G}} & 0\\ A_{22}^{-1}A_{21} & I_{\mathcal{G}^{\perp}} \end{bmatrix}^{-1} = \begin{bmatrix} I_{\mathcal{G}} & 0\\ -A_{22}^{-1}A_{21} & I_{\mathcal{G}^{\perp}} \end{bmatrix}.$$

In fact

$$A^{-1} = \begin{bmatrix} I_{\mathcal{G}} & 0\\ -A_{22}^{-1}A_{21} & I_{\mathcal{G}^{\perp}} \end{bmatrix} \cdot \begin{bmatrix} ([\mathbf{P}]A)^{-1} & 0\\ 0 & ((\mathbf{P}^{\perp})A)^{-1} \end{bmatrix} \cdot \begin{bmatrix} I_{\mathcal{G}} & -A_{12}A_{22}^{-1}\\ 0 & I_{\mathcal{G}^{\perp}} \end{bmatrix},$$

and

$$A \geq \begin{bmatrix} I_{\mathcal{G}} & A_{12}A_{22}^{-1} \\ 0 & I_{\mathcal{G}^{\perp}} \end{bmatrix} \cdot \begin{bmatrix} [\mathbf{P}]A & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} I_{\mathcal{G}} & 0 \\ A_{22}^{-1}A_{21} & I_{\mathcal{G}^{\perp}} \end{bmatrix} = [\mathbf{P}]A$$

Corresponding to (2.2) we have

$$\mu I \le A \le \lambda I \implies \mu I_{\mathcal{G}} \le [\mathbf{P}]A \le \lambda I_{\mathcal{G}}.$$
 (2.3)

Corollary 2.2. For A, B > 0,

$$B \lll A \iff (\mathbf{P})B \le [\mathbf{P}]A \text{ for all projection } P$$
$$\iff A^{-1} \lll B^{-1}.$$

3. EXAMPLES

Given A with $\mu I \leq A \leq \lambda I$ for some $0 < \mu < \lambda$, we try to find reasonable $0 \leq B$ of the form $B = \alpha I - \beta A^{-1}$ with $\alpha, \beta \geq 0$ or = aA + b with $a \geq 0$ and real b for which $B \ll A$.

Theorem 3.1. Let $\mu I \leq A \leq \lambda I$ with $0 < \mu < \lambda$ and $\alpha, \beta \geq 0$. Then validity of $0 \leq \alpha - \frac{\beta}{t} \leq t$ for all $t \in [\mu, \lambda]$ implies that $\alpha I - \beta A^{-1} \ll A$.

Proof. Given a projection P, let $X := [\mathbf{P}]A$. Since by (2.3) $\mu I_{\mathcal{G}} \leq X \leq \lambda I_{\mathcal{G}}$ with $\mathcal{G} = \operatorname{ran}(P)$, the assumption implies

$$0 \le \alpha I_{\mathcal{G}} - \beta X^{-1} \le X.$$

Since $X^{-1} = (\mathbf{P})(A^{-1})$ by Theorem 2.1 , considering X and X^{-1} as operators in $B(\mathcal{H})$ we have

$$P(\alpha I - \beta A^{-1})P \le [\mathbf{P}]A \le A,$$

which is just the assertion.

Suppose that $\mu I \leq A \leq \lambda I$ with $0 < \mu < \lambda$ and that for $\alpha, \beta \geq 0$

$$0 \le \alpha - \frac{\beta}{t} \le t$$
 for all $t \in [\mu, \lambda]$,

or equivalently

$$\alpha \mu \leq \beta \quad and \quad h(t) := t^2 - \alpha t + \beta \geq 0 \text{ for all } t \in [\mu, \lambda].$$
 (3.1)

In this case, define a function $f_{\alpha,\beta}(t)$ by

$$f_{\alpha,\beta}(t) := \alpha - \frac{\beta}{t} \quad for \ t \in [\mu, \lambda].$$
(3.2)

Next determine $a \ge 0$ and real b by the relations

$$a\mu + b = \alpha - \frac{\beta}{\mu}$$
 and $a\lambda + b = \alpha - \frac{\beta}{\lambda}$, (3.3)

and define an affine function $g_{\alpha,\beta}(t)$ by

$$g_{\alpha,\beta}(t) := at + b \quad for \ t \in [\mu, \lambda].$$
(3.4)

Corollary 3.2. Suppose that (3.1) is satisfied and that $f_{\alpha,\beta}(t)$ and $g_{\alpha,\beta}(t)$ are defined according to (3.2) and (3.3) respectively. Then

 $0 \leq g_{\alpha,\beta}(A) \leq f_{\alpha,\beta}(A) \ll A$, so that $g_{\alpha,\beta}(A) \ll A$.

4

Proof. Since $f_{\alpha,\beta}(t)$ is concave by (3.2) and $g_{\alpha,\beta}(t)$ is affine by (3.4), and by (3.3)

$$g_{\alpha,\beta}(\mu) = f_{\alpha,\beta}(\mu)$$
 and $g_{\alpha,\beta}(\lambda) = f_{\alpha,\beta}(\lambda)$

we can conclude that $g_{\alpha,\beta}(t) \leq f_{\alpha,\beta}(t)$ on $[\mu, \lambda]$. Then via functional calculus and by Theorem 3.1 and implication (2.1)

$$0 \le g_{\alpha,\beta}(A) \le f_{\alpha,\beta}(A) \lll A$$
, so that $g_{\alpha,\beta}(A) \lll A$.

In the remaining part of this section, under the assumption on a pair (α, β) as in Corollary 3.2, we will investigate when the extremal cases as $f_{\alpha,\beta}(\mu) = \mu$ or $f_{\alpha,\beta}(\lambda) = \lambda$ occur.

Proposition 3.3. If $f_{\alpha,\beta}(\mu) = \mu$, then $\mu \leq \alpha \leq 2\mu$ and $\beta = (\alpha - \mu)\mu$. Conversely if $\mu \leq \alpha \leq 2\mu$, then the pair (α, β) with $\beta := (\alpha - \mu)\mu$ satisfies condition (3.1) and $f_{\alpha,\beta}(\mu) = \mu$.

Proof. Since the assumption $\mu = f_{\alpha,\beta}(\mu) = \alpha - \frac{\beta}{\mu}$ implies $\beta = (\alpha - \mu)\mu$, so that $\alpha \ge \mu$. Since by (3.1)

$$h(t) = (t - \mu)\{t - (\alpha - \mu)\} \ge 0 \text{ for all } t \in [\mu, \lambda]$$

we have $\alpha - \mu \leq \mu$, that is, $\alpha \leq 2\mu$.

Conversely, suppose that $\mu \leq \alpha \leq 2\mu$. Define $\beta := (\alpha - \mu)\mu$. Clearly $\beta \geq \alpha\mu$ and $f_{\alpha,\beta}(\mu) = \mu$. Since $\alpha - \mu \leq \mu$, we have $h(t) \geq 0$ on $[\mu, \lambda]$, so that (3.1) is satisfied.

We notice the following concrete examples.

(i) When $\alpha = 2\mu$ and $\beta = \mu^2$,

$$f_{\alpha,\beta}(t) = \mu(2 - \frac{\mu}{t})$$
 and $g_{\alpha,\beta}(t) = \frac{\mu}{\lambda} \{t + (\lambda - \mu)\}.$

(ii) When $\alpha = \mu$ and $\beta = 0, f_{\alpha,\beta}(t) = g_{\alpha,\beta}(t) = \mu$.

Proposition 3.4. The requirement $f_{\alpha,\beta}(\lambda) = \lambda$ is possible only when $\lambda \leq 2\mu$ or equivalently $2\lambda \leq \frac{\lambda^2}{\lambda-\mu}$ and

$$2\lambda \le \alpha \le \frac{\lambda^2}{\lambda - \mu}$$
 and $\beta = \lambda(\alpha - \lambda).$ (3.5)

Conversely when $\lambda \leq 2\mu$, any pair (α, β) with (3.5) satisfies condition (3.1) and $f_{\alpha,\beta}(\lambda) = \lambda$.

Proof. The requirement $f_{\alpha,\beta}(\lambda) = \lambda$ implies $\beta = \lambda(\alpha - \lambda)$. On the other hand, condition (3.1)

 $(t - \lambda) \{ t - (\alpha - \lambda) \} \ge 0 \text{ for all } t \in [\mu, \lambda]$

implies $\alpha - \lambda \geq \lambda$, whence $\alpha \geq 2\lambda$. Again, since by (3.1) $\alpha \mu \geq \beta = \lambda(\alpha - \lambda)$, we have $\alpha \leq \frac{\lambda^2}{\lambda - \mu}$, so that

$$2\lambda \le \alpha \le \frac{\lambda^2}{\lambda - \mu}.$$

The proof of the converse direction is similar.

We notice the following concrete examples.

(iii) Let
$$0 < \lambda \le 2\mu$$
. When $\alpha := \frac{\lambda^2}{\lambda - \mu}$ and $\beta := \frac{\lambda^2 \mu}{\lambda - \mu}$,
 $f_{\alpha,\beta}(t) = \frac{\lambda^2}{\lambda - \mu} \left\{ 1 - \frac{\mu}{t} \right\}$ and $g_{\alpha,\beta}(t) = \frac{\lambda}{\lambda - \mu} \{t - \mu\}$

(iv) Let $0 < \lambda \leq 2\mu$. When $\alpha := 2\lambda$ and $\beta := \lambda^2$,

$$f_{\alpha,\beta}(t) = \lambda \Big\{ 2 - \frac{\lambda}{t} \Big\}$$
 and $g_{\alpha,\beta}(t) = \frac{\lambda}{\mu} \Big\{ t - (\lambda - \mu) \Big\}.$

4. Connection with known results

Bhatia and Kittaneh [3] established a remarkable matrix arithmetic-geometric mean inequality. It says that for any $n \times n$ matrices $A, C \ge 0$ and any unitarily invariant norm $\|\cdot\|$ (see [2, p.91] for definition)

$$\|AC\| \leq \|\{\frac{A+C}{2}\}^2\|$$

Taking the operator norm, this inequality is extended to the case of Hilbert space operators. Taking A^{-1} in place of A, this theorem for the operator norm says

$$C + A^{-1} \leq 2 \cdot I \quad \Longrightarrow \quad A^{-1}C^2A^{-1} \leq I \quad \Longrightarrow \quad C^2 \leq A^2,$$

or

$$0 \le C \le 2 \cdot I - A^{-1} \quad \Longrightarrow \quad C^2 \le A^2.$$

Therefore this corresponds to the case that $\alpha = 2, \beta = 1, \mu = \frac{1}{2}$ and any number λ with $\lambda I \ge A$.

Suppose that 0 < A has maximum spectrum λ and minimum spectrum μ . The numbers λ and μ can be expressed in terms of norms related to A. In fact

$$\lambda = \|A\| \quad and \quad \mu = \|A^{-1}\|^{-1}. \tag{4.1}$$

The number

$$\kappa_A := \frac{(\lambda + \mu)^2}{4\lambda\mu} \tag{4.2}$$

is called the Kantorvich constant of A. Then it is clear from (4.1) and (4.2) that

$$\kappa_A = \frac{(\|A\| \cdot \|A^{-1}\| + 1)^2}{4\|A\| \cdot \|A^{-1}\|}$$

The following fact has been known (see [4, Chapter III] for more detail):

Theorem 4.1. For A > 0,

$$0 \le C \le A \implies C^2 \le \kappa_A \cdot A^2$$
.

Let us show how this can be incorporated into our theory. The following proposition can be checked immediately. **Proposition 4.2.** When $\alpha = \frac{4\lambda\mu}{\lambda+\mu}$ and $\beta = \frac{4\lambda^2\mu^2}{(\lambda+\mu)^2}$ the pair (α,β) satisfies condition (3.1) and

$$f_{\alpha,\beta}(t) = \frac{4\lambda\mu}{\lambda+\mu} \left\{ 1 - \frac{\lambda\mu}{(\lambda+\mu)t} \right\} \quad and \quad g_{\alpha,\beta}(t) = \frac{4\lambda\mu}{(\lambda+\mu)^2} \cdot t = \kappa_A^{-1}t.$$

Therefore $k_A^{-1} \cdot A \lll A$.

Now Theorem 4.1 is deduced from Proposition 4.2 and Theorem 1.1 as follows:

$$0 \le C \le A \implies \kappa_A^{-1}C \le \kappa_A^{-1}A \lll A$$
$$\implies \kappa_A^{-2}C^2 \le \kappa_A^{-1}A^2 \implies C^2 \le \kappa_A \cdot A^2.$$

Notice that the above argument shows that

$$0 \le C \le \kappa_A^{-1/2} \cdot A \quad \Longrightarrow \quad C^2 \le A^2$$

References

- T. Ando, Schur complements and matrix inequalities: Operator-theoretic approach, pp. 137-162, in The Schur complement and its applications, edited by F. Zhang, Springer, New York, 2005.
- 2. R. Bhatia, Matrix Analysis, Springer, New York-Berlin-Heidelberg, 1997.
- R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000), 203–211.
- 4. T. Furuta, Invitation to Linear Operators, Taylor & Francis, London and New York, 2001.

HOKKAIDO UNIVERSITY (EMERITUS), SAPPORO 060, JAPAN *E-mail address*: ando@es.hokudai.ac.jp