NON-ISOMORPHIC C^*-ALGEBRAS WITH ISOMORPHIC UNITARY GROUPS

AHMED AL-RAWASHDEH

Communicated by E. Katsoulis

Abstract. Dye, [Ann. of Math. (2) 61 (1955), 73–89] proved that the discrete unitary group in a factor determines the algebraic type of the factor. Afterwards, for a large class of simple unital C^*-algebras, Al-Rawashdeh, Booth and Giordano [J. Funct. Anal. 262 (2012), 4711–4730] proved that the algebras are $*$-isomorphic if and only if their unitary groups are isomorphic as abstract groups. In this paper, we give a counterexample in the non-simple case. Indeed, we give two C^*-algebras with isomorphic unitary groups but the algebras themselves are not $*$-isomorphic.

1. Introduction

In [4], H. Dye proved that two von Neumann factors not of type I_{2n} are isomorphic (via a linear or a conjugate linear $*$-isomorphism) if and only if their unitary groups are isomorphic as abstract groups. Indeed, he proved the following main theorem:

Theorem 1.1 ([4], Theorem 2). Let M and N be factors not of type I_{2n}, and let φ be a group isomorphism between their unitary groups $U(M)$ and $U(N)$. Then there exists a linear (or conjugate linear) $*$-isomorphism ψ of M onto N which implements φ in the following sense: for some (possible discontinuous) character λ of $U(M)$ and all $u \in U(M)$, $\varphi(u) = \lambda(u)\psi(u)$.

Copyright 2016 by the Tusi Mathematical Research Group.
Date: Received: Sep. 20, 2016; Accepted: Dec. 4, 2016.
2010 Mathematics Subject Classification. Primary 46L05; Secondary 46L35.
Key words and phrases. C^*-algebra, unitary group, $*$-isomorphism.
In [3], Theorem 1], M. Broise shows that the unitary group of a factor not of type I_n has no non-trivial characters. Therefore Dye’s result can be rewritten as follows:

Theorem 1.2. If N and M are two von Neumann factors not of type $I_n(n < \infty)$, then any isomorphism between their unitary groups is implemented by a linear or a conjugate linear $*$-isomorphism between the factors.

Then extending the above result to some cases of simple, unital C^*-algebras, the author in [1] proved that if φ is a continuous automorphism of the unitary group of a UHF-algebra, then φ is implemented by linear or conjugate linear $*$-isomorphism.

In [2], Al-Rawashdeh, Booth and Giordano generalized Dye’s approach for a large class of simple, unital C^*-algebras. An isomorphism of the unitary groups, induces an isomorphism of their K-theory. In particular, if A and B are both simple unital AF-algebras, both irrational rotation algebras, or both Cuntz algebras and their unitary groups are isomorphic (as abstract groups), then A and B are isomorphic as C^*-algebras. In general, they proved the following main theorems:

Theorem 1.3 ([2], Theorem 4.10). Let A and B be two simple, unital AH-algebras of slow dimension growth and of real rank zero. Then A and B are isomorphic if and only if their unitary groups are topologically isomorphic.

Theorem 1.4 ([2], Corollary 5.7). Let A and B be two unital Kirchberg algebras belonging to the UCT-class \mathcal{N}. Then A and B are isomorphic if and only if their unitary groups are isomorphic (as abstract groups).

In this paper, we give an example of two C^*-algebras whose unitary groups are isomorphic, however the algebras themselves are not $*$-isomorphic. The counterexample is given in the non-simple C^*-algebra $C(X)$, where X is a compact set. Recall that the unitary group of $C(X)$ is the group of all continuous functions from X to the unit circle \mathbb{T}, which is denoted by $C(X, \mathbb{T})$.

2. The Counterexample

Let us recall Milutin’s theorem which is stated as follows:

Theorem 2.1 (Milutin). [7, p.494] If X and Y are two compact, metrizable spaces which are non-countable, then $C(X, \mathbb{R}) \simeq C(Y, \mathbb{R})$ as Banach spaces.

Let us recall the following results of V. Pestov in [6]. Let ζ denote the group homomorphism from $C(X, \mathbb{T})$ to the cohomotopy group $\pi^1(X)$ assigning to every mapping its homotopy class. Denote by $C^0(X, \mathbb{T})$ the kernel of ζ. Let X be a topological space and θ be the map of the linear space $C(X, \mathbb{R})$ to the group $C(X, \mathbb{T})$, given by $\theta(f) = \exp(2\pi if)$. The image of $C(X, \mathbb{R})$ under θ is contained in $C^0(X, \mathbb{T})$ and θ is an additive group homomorphism.
If \(x_0 \in X \), then let
\[
C(X, x_0, \mathbb{R}) = \{ f \in C(X, \mathbb{R}); f(x_0) = 0 \},
\]
\[
C(X, x_0, \mathbb{T}) = \{ f \in C(X, \mathbb{T}); f(x_0) = 1 \},
\]
\[
C^0(X, x_0, \mathbb{T}) = \{ f \in C^0(X, \mathbb{T}); f(x_0) = 1 \}.
\]

Obviously, \(\theta \) maps \(C(X, x_0, \mathbb{R}) \) to \(C^0(X, x_0, \mathbb{T}) \). Denote by \(\theta_0 \) the restriction of \(\theta \) to \(C(X, x_0, \mathbb{R}) \).

Proposition 2.2 ([6], Pro.13). Let \(X \) be a path-connected space and let \(x_0 \in X \). Then the map \(\theta_0 : C(X, x_0, \mathbb{R}) \to C^0(X, x_0, \mathbb{T}) \) is an algebraic isomorphism.

For every element \(x_0 \in X \), the groups \(C^0(X, \mathbb{T}) \) and \(C^0(X, x_0, \mathbb{T}) \oplus \mathbb{T} \) are isomorphic under the mapping \(f \mapsto (f.f(x_0)^{-1}, f(x_0)) \). Similarly, the groups \(C(X, x_0, \mathbb{R}) \oplus \mathbb{R} \) and \(C(X, \mathbb{R}) \) under the mapping \(f \mapsto (f - f(x_0), f(x_0)) \), (see [6], Lemma 7).

Consider the following short exact sequence:
\[
0 \to C^0(X, \mathbb{T}) \xrightarrow{\iota} C(X, \mathbb{T}) \xrightarrow{\zeta} \pi^1(X) \to 0.
\]
If \(X \) is compact, then \(C(X, \mathbb{T}) \) splits, i.e. \(C(X, \mathbb{T}) = C^0(X, \mathbb{T}) \oplus \pi^1(X) \). Now let us prove the following lemma:

Lemma 2.3. Let \(X \) and \(Y \) be two compact spaces. If \(C(Y, \mathbb{R}) \) and \(C(X, \mathbb{R}) \) are isomorphic as Banach spaces, then there is an isomorphism between \(C(Y, \mathbb{R}) \) and \(C(X, \mathbb{R}) \) which sends 1 (as a constant function) to itself and hence sends all constant functions to constants.

Proof. Let \(\psi \) denote the isomorphism from \(C(Y, \mathbb{R}) \) onto \(C(X, \mathbb{R}) \). If \(x_0 \in X \), and \(k \in \mathbb{R}\setminus\{-1\} \), then we define
\[
\varphi_k : C(X, \mathbb{R}) \to C(X, \mathbb{R})
\]
\[
g \mapsto g + kg(x_0).
\]
It is clear that \(\varphi_k \) is a linear map and \(\varphi_k(1) = 1 + k \).

The map \(\varphi_k \) is surjective: If \(h \in C(X, \mathbb{R}) \), then \(h - \frac{k}{k+1}h(x_0) \in C(X, \mathbb{R}) \) and
\[
\varphi_k(h - \frac{k}{k+1}h(x_0)) = h + kh(x_0) - \frac{k}{k+1}h(x_0)\varphi_k(1) = h.
\]
Now to show that \(\varphi_k \) is injective, let \(g \in \ker(\varphi_k) \). Then for every \(x \in X \), \(g(x) + kg(x_0) = 0 \) and in particular, \((k + 1)g(x_0) = 0\), therefore \(g = 0 \), hence \(\varphi_k \) is a bijective.

Let \(\psi(1) = f \). As \(f \) is a non-zero function which belongs to \(C(X, \mathbb{R}) \), there exists \(x_0 \in X \) such that \(|f(x_0)| = \|f\|_{\infty} \). Let \(k = 2\text{sign}(f(x_0)) \). Then for all \(x \in X \),
\[
\varphi_k(f)(x) = f(x) + kf(x_0)
\]
\[
= f(x) + 2\text{sign}(f(x_0)).f(x_0)
\]
\[
= f(x) + 2|f(x_0)| > 0.
\]
The map $\psi_1 = \varphi_k \circ \psi$ is an isomorphism from $C(Y, \mathbb{R})$ onto $C(X, \mathbb{R})$ with $\psi_1(1) > 0$. Then define $\Phi : C(Y, \mathbb{R}) \to C(X, \mathbb{R})$ by $g \mapsto \frac{1}{\psi_1(1)} \psi_1(g)$ and hence the lemma is checked. \qed

Finally, let us introduce the following main counterexample:

Example 2.4. Consider $X = [0, 1]$ and $Y = [0, 1] \times [0, 1]$ as subspaces of the usual topology of \mathbb{R} and \mathbb{R}^2, respectively. As X and Y are not homeomorphic topological spaces, the C^*-algebras $C(X)$ and $C(Y)$ are not $*$-isomorphic.

Claim: $C(X, \mathbb{T}) \simeq C(Y, \mathbb{T})$ as abstract groups.

Proof. As X and Y are both contractible subsets of \mathbb{R} and \mathbb{R}^2, their cohomology groups $H^q(X) = H^q(Y) = 0$, for all $q > 0$. The cohomotopy groups $\pi^1(X)$ and $\pi^1(Y)$ are trivial. As X and Y are both compact metrizable non-countable spaces, there exists a Banach space-isomorphism Φ from $C(X, \mathbb{R})$ to $C(Y, \mathbb{R})$, by Milutin’s theorem. We may assume that Φ maps constant functions onto themselves. Now define

$$
\psi : C(X, x_0, \mathbb{R}) \to C(Y, y_0, \mathbb{R})
$$

$$
f \mapsto \Phi(f) - \Phi(f)(y_0).
$$

It is clear that ψ is a linear. If $g \in C(Y, y_0, \mathbb{R})$, then $h = \Phi^{-1}(g) - \Phi^{-1}(g)(x_0) \in C(X, x_0, \mathbb{R})$ and $\psi(h) = g$, hence ψ is a surjective. If $\psi(f) = 0$, then for all $y \in Y$, $\Phi(f)(y) = \Phi(f)(y_0)$, therefore $\Phi(f)$ is a constant function of Y and then $f = 0$. Hence ψ is an isomorphism. By Proposition (2.2), we have that $C^0(Y, \mathbb{T}) \simeq C^0(Y, \mathbb{T})$, hence $C(X, \mathbb{T}) \simeq C(Y, \mathbb{T})$ and the example is completed. \qed

Acknowledgments. The author would like to thank Professor Thierry Giordano from the University of Ottawa-Canada, for his guidance and help. Also, the author would like to thank the referee for the valuable comments and suggestions.

References

Department of Mathematical Sciences, Ahmed Al-Rawashdeh, P.O.Box 15551, Al-Ain, Abu Dhabi, United Arab Emirates.

E-mail address: aalrawashdeh@uaeu.ac.ae