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Abstract. Tsallis relative operator entropy was firstly formulated by Fujii
and Kamei as an operator version of Uhlmann’s relative entropy. Afterwards,
Yanagi, Kuriyama and Furuichi reformulated Tsallis relative operator entropy
as an operator version of Tsallis relative entropy. In this paper, we define
Tsallis relative operator entropy with negative parameters of (non-invertible)
positive operators on a Hilbert space and show some properties.

1. Introduction

Fujii and Kamei [3] introduced the relative operator entropy which is a relative
version of the operator entropy defined by Nakamura–Umegaki [12]: For positive
invertible operators A and B on a Hilbert space, the relative operator entropy is
defined by

S(A|B) = A
1
2

(
log A− 1

2 BA− 1
2

)
A

1
2 .

In addition, for non-invertible A and B, since S(A|B + ε) has the right term
monotone decreasing property as ε ↓ 0, the relative operator entropy is defined
by

S(A|B) = s-lim
ε→0

S(A|B + ε) (1.1)

if the strong operator limit exists as a bounded operator.
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As a parametric extension of the relative operator entropy, Yanagi, Kuriyama
and Furuichi [14] defined Tsallis relative operator entropy which is an operator
version of Tsallis type relative entropy in quantum system due to Abe [1], also
see [13, 6]: For two positive invertible operators A and B on a Hilbert space and
any real number t ∈ (0, 1], Tsallis relative operator entropy is defined by

Tt(A|B) =
A ]t B − A

t
,

where the t-weighted geometric operator mean is defined by

A ]t B = A1/2(A−1/2BA−1/2)tA1/2 for t ∈ [0, 1].

We use the notation \t for the binary operation

A \t B = A1/2(A−1/2BA−1/2)tA1/2 for t 6∈ [0, 1], (1.2)

whose formula is the same as ]t. Though A \t B for t 6∈ [0, 1] are not operator
mean in the sense of Kubo–Ando theory [11], A \t B have operator mean like
properties for any positive invertible operators A and B. Thus we call (1.2) the
quasi t-geometric mean for t 6∈ [0, 1]. Moreover, Furuichi, Yanagi and Kuriyama
[7] considered Tsallis relative operator entropy for the parameter t < 0:

Tt(A|B) =
A \t B − A

t
for t < 0. (1.3)

Also, from viewpoint of Uhlmann’s interpolational method, Fujii and Kamei [4]
formulated (1.3) for t ∈ [−1, 0) and showed many operator mean like properties.
For example, for positive invertible operators A and B

A− AB−1A ≤ Tt(A|B) ≤ B − A for all t ∈ [−1, 1] (1.4)

and

Tt(A|B) ↘ S(A|B) for t ↘ 0 and Tt(A|B) ↗ S(A|B) for t ↗ 0. (1.5)

It is meaningful to study properties of Tsallis relative operator entropy for the
development of non-commutative statistical physics and quantum information
theory. However, Tsallis relative operator entropy with negative parameters re-
quires the invertibility of positive operators in general. So it is necessary for us
to formulate (1.3) for general non-invertible positive operators.

The aim of this paper is to study Tsallis relative operator entropy with negative
parameters t ∈ [−1, 0) of (non-invertible) positive operators on a Hilbert space.
For this, we investigate the properties of the quasi t-geometric mean \t for t ∈
[−1, 0) in non-invertible case. By limiting the range of t to [−1, 0), we consider
the properties of Tsallis relative operator entropy with negative parameters for
non-invertible case.

2. Quasi t-geometric mean \t for −1 ≤ t < 0

In this section, we study the properties of the quasi t-geometric mean \t for
t ∈ [−1, 0) in non-invertible case.
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Let A and B be positive operators on a Hilbert space and t ∈ [−1, 0). Then it
follows that A \t (B + ε) is monotone increasing on ε ↓ 0. In fact, for δ > 0 and
ε > ε′ > 0

(A + δ) \t (B + ε) ≤ (A + δ) \t (B + ε′)

by Löwner–Heinz theorem. Since B + ε, B + ε′ are invertible and

(A + δ) \t (B + ε) = (A + δ)1/2((A + δ)1/2(B + ε)−1(A + δ)1/2)−t(A + δ)1/2,

it follows from δ → 0 that

A \t (B + ε) ≤ A \t (B + ε′).

For non-invertible B, the quasi t-geometric mean A \t B for t ∈ [−1, 0) is defined
as the following strong-operator limit if it exists:

A \t B = s-lim
ε↓0

A \t (B + ε). (2.1)

By the definition of (2.1), A \t B for t ∈ [−1, 0) exists if a set {A \t (B+ε) : ε > 0}
is bounded above.

For non-invertible case, we have the following properties of quasi t-geometric
means A \t B for t ∈ [−1, 0):

Lemma 2.1. Let A, B, C and D be positive operators. If A \t B and C \t D
exist for some t ∈ [−1, 0), then the following properties like operator means hold:

(1) right reverse monotonicity: B ≤ C implies A \t B ≥ A \t C.
(2) super-additivity: A \t B + C \t D ≥ (A + C) \t (B + D).
(3) homogeneity: (αA) \t (αB) = α(A\t B) for all α > 0.
(4) jointly convexity: For α ∈ [0, 1]

((1− α)A + αC) \t ((1− α)B + αD) ≤ (1− α)A \t B + α C \t D.

Proof. (1): Since B ≤ C, we have B + ε ≤ C + ε for all ε > 0 and so

(A + δ) \t (B + ε) ≥ (A + δ) \t (C + ε)

for all δ > 0 and as δ → 0 we have

A \t (B + ε) ≥ A \t (C + ε).

Since A \t (B + ε) and A \t (C + ε) are monotone increasing on ε ↓ 0 and A \t B
exists, it follows that A \t C exists and we have (1) as ε → 0.

(2): For δ > 0 and ε > 0, put Xδ = (A + δ)1/2(A + C + 2δ)−1/2 and Yδ =
(C + δ)1/2(A + C + 2δ)−1/2. It follows that

X∗
δ ((A + δ)−1/2(B + ε)(A + δ)−1/2)tXδ + Y ∗

δ ((C + δ)−1/2(D + ε)(C + δ)−1/2)tYδ

≥ ((A + C + 2δ)−1/2(B + D + 2ε)(A + C + 2δ)−1/2)t,

so that

(A + δ) \t (B + ε) + (C + δ) \t (D + ε) ≥ (A + C + δ) \t (B + D + 2ε).

Hence as δ → 0 it follows from the invertibility of B + ε and D + ε that

A \t (B + ε) + C \t (D + ε) ≥ (A + C) \t (B + D + 2ε)
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and as ε → 0 (A + C) \t (B + D) exists and we have (2) since A \t B and C \t D
exist.

(3) follows from the definition of the quasi t-geometric means for t ∈ [−1, 0).
(4) follows from (2) and (3). �

For non-invertible case, the quasi t-geometric mean A\tB for t ∈ [−1, 0) have
the following information monotonicity:

Theorem 2.2. Let A and B be positive operators and Φ a normal positive linear
map. If A \t B exists for some t ∈ [−1, 0), then

informationmonotonicity : Φ(A \t B) ≥ Φ(A) \t Φ(B).

In particular,

transformerinequality : T ∗AT \t T ∗BT ≤ T ∗(A \t B)T for any operators T

and the equality holds for invertible T .

Proof. For n ∈ N, put Φn(X) = Φ(X) + 1
n
ϕ(X)I where ϕ is a state. Then the

linear map Φn is strictly positive for all n ∈ N, i.e., X > 0 implies Φn(X) > 0 for
all n ∈ N. Moreover, for each ε > 0 put

Ψn(X) = Φn(B + ε)−1/2Φn((B + ε)1/2X(B + ε)1/2)Φn(B + ε)−1/2 for n ∈ N.

Then Ψn is a unital positive linear map for all n ∈ N and the Jensen operator
inequality for 1 < 1− t ≤ 2 implies

Ψn(X1−t) ≥ Ψn(X)1−t for X > 0,

also see [9, p22,Theorem 1.20]. Hence we have

Φn(A \t (B + ε)) = Φn(B + ε)1/2Ψn(((B + ε)−1/2A(B + ε)−1/2)1−t)Φn(B + ε)1/2

≥ Φn(B + ε)1/2Ψn((B + ε)−1/2A(B + ε)−1/2)1−tΦn(B + ε)1/2

= Φn(B + ε) \1−t Φn(A)

= Φn(A) \t Φn(B + ε).

By the right reverse monotonicity of \t in Lemma 2.1, we have

Φn(A \t (B + ε)) ≥ Φn(A) \t Φn(B + ε) ≥ Φn(A) \t (Φn(B + ε) + δ)

for all δ > 0. Since Φ(B + ε) + δ is invertible, as n →∞ we have

Φ(A \t (B + ε)) ≥ Φ(A) \t (Φ(B + ε) + δ).

Since A \t B = s-limε↓0 A \t (B +ε) and Φ(B)+ δ is invertible, as ε → 0 it follows
from the normality of Φ that

Φ(A \t B) ≥ Φ(A) \t (Φ(B) + δ).

Since {Φ(A) \t (Φ(B) + δ) : δ > 0} is bounded above for all δ > 0, Φ(A) \t Φ(B)
exists and Φ(A \t B) ≥ Φ(A) \t Φ(B). �
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For t ∈ [−1, 0), since 1 \tε is not bounded above for ε > 0, 1\t0 does not
make sense. Thus we consider an existence condition such that A \t B exists as
a bounded operator, which is expressed by the boundedness of tangent lines: For
α > 0 and t ∈ [−1, 0), put

Lα,t(A, B) = (1− t)α−tA + tα1−tB. (2.2)

Then we have Lα,t(A, B) ≤ A \t B for all α > 0 and positive invertible A, B.

Lemma 2.3. Let A and B be positive operators and t ∈ [−1, 0). Then A \t B
exists as a bounded operator if and only if

sup
α>0

Lα,t(A, B) = sup
α>0

[
(1− t)α−tA + tα1−tB

]
< +∞. (2.3)

The convention (2.3) means that there is a scalar constant c with ϕ(Lα,t(A, B)) ≤
c for all states ϕ and α > 0. As we will see in the proof, we have A \t B ≤ c.

Proof. Suppose that A \t B exists as a bounded operator for some t ∈ [−1, 0).
Then for each ε > 0

A \t B ≥ A \t (B + ε) = (B + ε)1/2
[
(B + ε)−1/2A(B + ε)−1/2

]1−t
(B + ε)1/2

≥ (B + ε)1/2
[
(1− t)α−t(B + ε)−1/2A(B + ε)−1/2 + tα1−t

]
(B + ε)1/2

= (1− t)α−tA + tα1−t(B + ε) = Lα,t(A, B + ε)

and as ε → 0 we have

A \t B ≥ (1− t)α−tA + tα1−tB = Lα,t(A, B)

for all α > 0.
Conversely, suppose that supα>0 Lα,t(A, B) < +∞; there is the scalar upper

bound c. Then we have

c ≥ Lα,t(A, B) ≥ Lα,t(A, B + ε)

for all ε > 0 since t < 0 and this implies

c(B + ε)−1 ≥ Lα,t((B + ε)−1/2A(B + ε)−1/2, I)

and hence

c(B+ε)−1 ≥ sup
α>0

Lα,t((B+ε)−1/2A(B+ε)−1/2, I) =
[
(B + ε)−1/2A(B + ε)−1/2

]1−t
.

Therefore we have c ≥ A \t (B + ε) for all ε > 0. Since {A \t (B + ε) : ε > 0}
is bounded above and monotone increasing for ε → 0, there exists the strong-
operator limit of {A \t (B + ε) : ε > 0} and so A \t B exists as a bounded
operator. �

In order to show one of sufficient conditions that A \t B for some t ∈ [−1, 0)
exists, we need some preliminaries. The following lemma says that the quasi
t-geometric mean for t ∈ [−1, 0) has normalization:

Lemma 2.4. Let A be a positive operator and t ∈ [−1, 0). Then A \t A = A.
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Proof. Put F (α) = (1−t)α−t+tα1−t. Since Lα,t(A, A) = F (α)A ≤ maxα>0F (α)A =
F (1)A = A, we have

A ≥ (1− t)α−tA + tα1−tA ≥ (1− t)α−tA + tα1−t(A + ε)

for all ε > 0 and we have A ≥ A \t (A + ε) and so A \t A exists and A ≥ A \t A.
Conversely, by the supper-additivity of \t, we have

A + ε = (A + ε) \t (A + ε) ≤ A \t A + ε \t ε

= A \t A + ε

and so A ≤ A \t A. Therefore, we have A \t A = A. �

The following lemma shows that a kind of arithmetic-geometric mean inequality
holds, also see [8, p129, Theorem 2]:

Lemma 2.5. Let A and B be positive operators and t ∈ [−1, 0). If A \t B exists,
then

A \t B ≥ (1− t)A + tB

Proof. Since A \t (B + ε) ≥ (1 − t)α−tA + tα1−t(B + ε) for all α > 0, if we put
α = 1, then A \t (B + ε) ≥ (1− t)A + t(B + ε) and as ε → 0 we have the desired
inequality. �

If A is majorized by B in the sense of Douglas, i.e., A ≤ cB for some c > 0,
then A \t B exists for all t ∈ [−1, 0):

Theorem 2.6. Let A and B be positive operators. If there is a scalar c > 0 such
that A ≤ cB, then A \t B exists for all t ∈ [−1, 0), and

(1− t)A + tB ≤ A \t B ≤ c−tA. (2.4)

Proof. For t ∈ [−1, 0), put F (α) = (1− t)α−tc + tα1−t for α > 0. Then

F ′(α) = t(1− t)α−t−1(α− c)

and F (α) is maximum at α = c. Hence

Lα,t(A, B) = (1− t)α−tA + tα1−tB ≤ ((1− t)α−tc + tα1−t)B

≤ max
α>0

F (α)B = F (c)B = c1−tB.

Therefore, since Lα,t(A, B) is bounded above for all α > 0, it follows from
Lemma 2.3 that A \t B exists. Then we have the LHS of (2.4) by Lemma 2.5.
Since 1

c
A ≤ B, it follows from (i) of Lemma 2.1 and Lemma 2.4 that A \t B ≤

A \t (1
c
A) = c−tA \t A = c−tA and so we have the RHS of (2.4). �

We have the following relations around existence conditions:

Theorem 2.7. The implications (1) =⇒ (2) =⇒ (3) hold for any positive opera-
tors A, B and t ∈ [−1, 0), and each converse does not always hold.

(1) majorization or range inclusion: A ≤ cB for some c > 0, i.e., ranA
1
2 ⊂

ranB
1
2 .
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(2) existence condition: A \t B exists as a bounded operators, i.e.,

sup
α>0

[
(1− t)α−tA + tα1−tB

]
< +∞.

(3) kernel inclusion: kerA ⊃ kerB.

Proof. (1)=⇒(2) follows from Theorem 2.6.
(2)=⇒(3): For every x ∈ kerB, we have

〈((1− t)α−tA + tα1−tB)x, x〉 = (1− t)α−t〈Ax, x〉.

If 〈Ax, x〉 > 0, then the LHS above diverges as α →∞ because −1 ≤ t < 0 and
it contradicts (2). Hence we have Ax = 0 and x ∈ kerA.

The majorization (1) is stronger than existence condition (2): If A is a positive
operator with σ(A) = [0, 1], then A is not majorized by A2, while we see that
A \t A2 = A1+t. In fact, for each ε > 0, since A + ε is invertible, we have

(A + ε) \t (A + ε)2 = (A + ε)1−t(A + ε)2t = (A + ε)1+t → A1+t

as ε → 0 and so A \t A2 exists and A \t A2 = A1+t.
The existence condition (2) is stronger than kernel inclusion (3): If B is a

positive operator with σ(B) = [0, 1] and 0 is not an eigenvalue, then I and
B have trivial kernel. On the other hand, since t ∈ [−1, 0), for each ε > 0,
I \t (B + ε) = (B + ε)t ↗ Bt diverges as ε → 0 and so I \t B does not exist as a
bounded operator. �

Remark 2.8. If both ranges of A and B are closed, in particular, for the case of
matrices, the above conditions in Theorem 2.7 are all equivalent since the relation
ranA

1
2 = ranA = (kerA)⊥ holds for all positive operators A.

In [5], we show a kernel property ker(A ]t B) = kerA∨ kerB for the geometric
mean A ]t B for t ∈ (0, 1). Thus, we observe a kernel property for the quasi
t-geometric mean A \t B for t ∈ [−1, 0). To show it, we need the following
lemma:

Lemma 2.9. Let A and B be positive operators. If A \t B = 0 for some t ∈
[−1, 0), then A = 0.

Proof. By the information monotonicity in Theorem 2.2, we have

0 = ϕ(A \t B) ≥ ϕ(A) \t ϕ(B) ≥ 0

for all state ϕ and so ϕ(A) \t ϕ(B) = 0. Since 0 ≤ ϕ(A)1−t(ϕ(B) + ε)t ↗
ϕ(A) \t ϕ(B) = 0 as ε → 0, we have ϕ(A) = 0 for all state ϕ and thus A = 0. �

Theorem 2.10. Let A and B be positive operators. If A \t B exists for some
t ∈ [−1, 0), then

ker(A \t B) ∨ kerB ⊂ kerA.

Proof. By the transformer inequality in Theorem 2.2,

P (A \t B)P ≥ (PAP ) \t (PBP ) ≥ 0 for all projections P .
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If P is the projection on ker(A \t B), then P (A \t B)P = 0 and so (PAP ) \t (PBP ) =
0. By Lemma 2.9, we have PAP = 0. If x ∈ ker(A \t B), then

0 = 〈PAPx, x〉 = 〈Ax, x〉 =
∣∣∣∣A1/2x

∣∣∣∣2
and so A1/2x = 0. Thus x ∈ kerA and so

ker(A \t B) ⊂ kerA.

By Theorem 2.7, we have kerB ⊂ kerA and thus

ker(A \t B) ∨ kerB ⊂ kerA.

�

By readers’ convenience, we recall the following well-known ‘monotone conver-
gence lemma’ for monotone double sequences:

Lemma 2.11. Let {aδ1,δ2} be a bounded double sequence of real numbers for
δ1, δ2 ∈ (0, 1]. If {aδ1,δ2} is monotone decreasing for δ1, δ2 ↓ 0, then there exists
the limit with

lim
δ1,δ2↓0

aδ1,δ2 = lim
δ1↓0

lim
δ2↓0

aδ1,δ2 = lim
δ2↓0

lim
δ1↓0

aδ1,δ2 .

We have a right lower semi-continuity of the quasi t-geometric mean:

Theorem 2.12. Let A, B, Bn be positive operators for n = 1, 2, . . . and A \t B
exists for some t ∈ [−1, 0). If Bn ↘ B as n → ∞, then A \t Bn ↗ A \t B as
n →∞.

Proof. Since Bn ↘ B, it follows from Lemma 2.1 that A \t Bn exist for all n and
A \t Bn ≤ A \t B. For n ≤ n′ and m ≤ m′, we have

A \t Bn ≤ A \t Bn′ and A \t (Bn +
1

m
) ≤ A \t (Bn +

1

m′ )

and A \t (Bn+ 1
m

) ≤ A \t (B+ 1
m

) ≤ A \t B. Put s(n,m) = 〈(A \t (Bn+ 1
m

)x, x〉 for
x ∈ H and then s(n, m) is monotone increasing double sequence of real numbers
and bounded above. By Lemma 2.11, we have

lim
m→∞

lim
n→∞

s(n, m) = lim
n→∞

lim
m→∞

s(n, m) = lim
n,m→∞

s(n, m)

and so s-limn→∞A \t Bn = A \t B. �

Here, we recall Izumino’s construction of operator means [10, 2]: Let A and B
be positive operators. Put R = (A + B)1/2. Since A, B ≤ A + B, it follows from
Douglas majorization theorem that there exist the derivatives D and E such that
A1/2 = DR and B1/2 = ER with kerR ⊂ kerD ∩ kerE and ker D∗ = ker A and
ker E∗ = ker B. For the range projection P on ranR, we have

R(D∗D + E∗E)R = A + B = R2 = RPR

and kerR ⊂ kerD ∩ kerE = kerD∗D ∩ kerE∗E, and hence we have D∗D +
E∗E = P . Moreover, since P commutes both D∗D and E∗E, it follows that D∗D
commutes with E∗E and so we may assume that D∗D + E∗E = IR on ranR.

We have the following transformer equality of the quasi-t geometric mean for
some t ∈ [−1, 0):
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Theorem 2.13. Let A and B be positive operators. Under the situation above,
if A \t B exists for some t ∈ [−1, 0), then

A \t B = R(D∗D \t E∗E)R = s-lim
ε→0

R[D∗D \t (E∗E + ε)]R.

Proof. For all ε > 0 and α > 0, it follows from Lemma 2.3 that

A \t B ≥ A \t (B + ε) ≥ (1− t)α−tA + tα1−t(B + ε)

and so

A \t B ≥ (1− t)α−tA + tα1−tB

= R
(
(1− t)α−tD∗D + tα1−tE∗E

)
R

≥ R
(
(1− t)α−tD∗D + tα1−t(E∗E + ε)

)
R

= R(E∗E + ε)1/2Lα,t((E
∗E + ε)−1/2D∗D(E∗E + ε)−1/2, I)(E∗E + ε)1/2R,

where Lα,t is defined as (2.2). Hence it follows that

A \t B ≥ R(E∗E + ε)1/2
(
(E∗E + ε)−1/2D∗D(E∗E + ε)−1/2

)1−t
(E∗E + ε)1/2R

= R(D∗D \t(E
∗E + ε))R

for all ε > 0. Since R(D∗D \t(E
∗E + ε))R are monotone increasing as ε → 0 and

bounded above for all ε > 0, there exists the strong-operator limit

G = s-lim
ε→0

R(D∗D \t(E
∗E + ε))R

and we may write G = R(D∗D \t E∗E)R and so

A \t B ≥ R(D∗D \t E∗E)R.

On the other hand, it follows from transformer inequality in Theorem 2.2 that

A \t B ≥ R[D∗D \t (E∗E + ε)]R

≥ (RD∗DR) \t (RE∗ER + εR2)

≥ (RD∗DR) \t (RE∗ER + ε‖R2‖) → A \t B

as ε → 0. Hence we have

A \t B = R(D∗D \t E∗E)R.

�

3. Tsallis relative operator entropy

In this section, we study properties of Tsallis relative operator entropy with
negaitive parameters for non-invertible case.

Let A and B be positive operators and t ∈ [−1, 0). Since A\t(B+ε) is monotone
incraesing on ε ↘ 0, it follows that Tsallis relative operator entropy

Tt(A|B + ε) =
A\t(B + ε)− A

t
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is monotone decreasing on ε ↘ 0. Then we define Tsallis relative operator entropy
with negative parameters as

Tt(A|B) = s-lim
ε↓0

Tt(A|B + ε)

if the strong-operator limit exists.
By Lemma 2.1 and Theorem 2.2, we have the following properties of Tsallis

relative operator entropy with negative parameters for non-invertible case:

Theorem 3.1. Let A, B, C,D be positive operators. If Tt(A|B) and Tt(C|D)
exist for some t ∈ [−1, 0), then the following properties of Tsallis relative operator
entropy with negative parameters hold:

(1) right monotonicity: If B ≤ C, then Tt(A|B) ≤ Tt(A|C).
(2) transformer inequality: X∗Tt(A|B)X ≤ Tt(X

∗AX|X∗BX) for all X
(the equality holds for invertible X).

(2′) information monotonicity: Φ(Tt(A|B)) ≤ Tt(Φ(A)|Φ(B))
for all normal positive linear maps Φ.

(3) sub-additivity: Tt(A|B) + Tt(C|D) ≤ Tt(A + C|B + D).
(3′) jointly concavity: For all s ∈ [0, 1]

(1− s)Tt(A|B) + sTt(C|D) ≤ Tt((1− s)A + sC|(1− s)B + sD).
(4) homogeneity: Tt(αA|αB) = αTt(A|B) for all α > 0.
(5) affine parametrization: Tt(A|A \s B) = sTts(A|B) for t, s ∈ R with

s, t 6= 0.

(6) orthogonality: Tt

(⊕
k

Ak|
⊕

k

Bk

)
=
⊕

k

Tt(Ak|Bk).

Proof. (1) follows from (1) of Lemma 2.1. (2) and (2’) follows from Theorem 2.2.
(3),(3’) and (4) follows from Lemma 2.1. (5): By the definition of the quasi
t-geomtric means, we have A \t(A\sB) = A\stB for s, t ∈ R with s, t 6= 0 and so

Tt(A|A \s B) =
A \t(A\sB)− A

t
=

A\stB − A

t
= s

A\stB − A

st
= sTst(A|B).

(6): Since the quasi t-geometric means \t for t ∈ [−1, 0) satisfy the orthogonality
in the invertible case, we have (6) under the existence of Tt(Ak|Bk) for each k. �

By Lemma 2.3, we have the following existence condition such that Tt(A|B)
for t ∈ [−1, 0) exists as a bounded operator:

Lemma 3.2. Let A and B be positive operators and t ∈ [−1, 0). Then Tt(A|B)
exists if and only if

inf
α>0

{
(1− t)α−tA + tα1−tB − A

t

}
> −∞.

Next, by Theorem 2.7, we have sufficient conditions that Tt(A|B) exists for
non-invertible case by virtue of the quasi t-geometric means.

Theorem 3.3. The following implications (1) =⇒ (2) =⇒ (3) hold for any
positive operators A, B and t ∈ [−1, 0), and each converse does not always hold.
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(1) majorization or range inclusion: A ≤ cB for some c > 0, i.e.,

ranA
1
2 ⊂ ranB

1
2 .

(2) existence condition: Tt(A|B) exists as a bounded operators, i.e.,

inf
α>0

{
(1− t)α−tA + tα1−tB − A

t

}
> −∞

(3) kernel condition: kerA ⊃ kerB.

Furuichi, Yanagi and Kuriyama [7] showed bounds of Tsallis relative operator
entropy with t ∈ (0, 1] for invertible case. Thus, we study on bounds of Tsallis
relative operator entropy with negative parameters for non-invertible case.

Let A be a positive operator and t ∈ [−1, 0). Put Ht(A) = Tt(A|I) = A1−t−A
t

and it is called Tsallis operator entropy. Then Ht(A) converges to the operator
entropy H(A) = H0(A) = −A log A as t ↗ 0. For x ≥ 0 and t ∈ [−1, 0), we

denote the generalized logarithmic function by lnt(x) = xt−1
t

.

Theorem 3.4. Let A and B be positive operators.

(1) If Tt(A|B) exists for some t ∈ [−1, 0), then Tt(A|B) ≤ Ht(A)+A1−t lnt ‖B‖.
(2) A ≤ cB for some c > 0 implies Tt(A|B) ≥ (1− c)A for all t ∈ [−1, 0).

Proof. Since Tt(A|B) exists for some t ∈ [−1, 0) and B ≤ ‖B‖, it follows from
the right monotonicity in Theorem 3.1 that

Tt(A|B) ≤ Tt(A|‖B‖) =
A1−t‖B‖t − A

t
= Ht(A) + A1−t lnt ‖B‖.

Next, suppose that A ≤ cB for some c > 0. It follows from Theorem 3.3 that
Tt(A|B) exists for all t ∈ [−1, 0). Since 1 − 1

x
≤ xt−1

t
for x > 0 and t ∈ [−1, 0),

we have A− A(B + ε)−1A ≤ Tt(A|B + ε) for all ε > 0 and

A− A(B + ε)−1A ≥ A− A(
A

c
+ ε)−1A → (1− c)A

as ε → 0. Hence we have Tt(A|B) ≥ (1− c)A. �

We have an upper semi-continuity of Tsallis relative operator entropy with
negative parameters:

Lemma 3.5. Let A and B be positive operators. If Tt(A|B) exists for some
t ∈ [−1, 0), then

Tt(A + ε|B + ε) ↘ Tt(A|B)

as ε ↘ 0.

Proof. For ε > δ > 0, it follows from the super-additivity of \t that

Tt(A + ε|B + ε) =
1

t
[(A + δ + ε− δ) \t (B + δ + ε− δ)− (A + ε)]

≥ 1

t
[(A + δ) \t (B + δ) + (ε− δ) \t (ε− δ)− (A + ε)]

=
(A + δ) \t (B + δ)− (A + δ)

t
= Tt(A + δ|B + δ).
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Put aδ1,δ2 = 〈Tt(A + δ1|B + δ2 + δ1)x, x〉 and then aδ1,δ2 are monotone decreasing
for δ1, δ2 ↓ 0, i.e., (δ′1, δ

′
2) ≤ (δ1, δ2) implies aδ′1,δ′2

≤ aδ1,δ2 . Since B + δ2 is
invertible, we have aδ1,δ2 ↘ a0,δ2 as δ1 → 0. Moreover, since Tt(A|B) exists, we
have a0,δ2 ↘ a0,0 = 〈Tt(A|B)x, x〉 as δ2 → 0. Also, we have aδ1,δ2 ↘ aδ1,0 as
δ2 ↘ 0. By Lemma 2.11, there exists the limit and we have

lim
δ1,δ2↓0

aδ1,δ2 = lim
δ1↓0

( lim
δ2↓0

aδ1,δ2) = lim
δ2↓0

( lim
δ1↓0

aδ1,δ2)

and we have the desired result. �

Lemma 3.6. Let A, B, Bn be positive operators for n = 1, 2, . . . and Tt(A|B)
exists for some t ∈ [−1, 0). If Bn ↘ B as n →∞, then Tt(A|Bn) ↘ Tt(A|B) as
n →∞.

Proof. Since Bn ↘ B as n →∞ and Tt(A|B) exists, it follows from (1) of Theo-
rem 3.1 that Tt(A|Bn) exists for all n and Tt(A|B) ≤ Tt(A|Bn). By Theorem 2.12,
we have

Tt(A|Bn) =
A \t Bn − A

t
↘ A \t B − A

t
= Tt(A|B)

as n →∞. �

For positive invertible operators A, B and t ∈ [−1, 0), we have (1.4) in In-
troduction and so the positivity (resp. negativity) of Tt(A|B) is equivalent to
B ≥ A (resp. B ≤ A) and hence Tt(A|B) = 0 if and only if A = B. By virtue
of Izumino’s construction, we have the following same results for non-invertible
case:

Theorem 3.7. Let A and B be positive operators. Suppose that Tt(A|B) exists
for some t ∈ [−1, 0). Then Tt(A|B) ≥ 0 ( resp. Tt(A|B) ≤ 0 ) if and only if
B ≥ A ( resp. B ≤ A ).

Proof. If Tt(A|B) ≥ 0 for some t ∈ [−1, 0), then A \t B − A ≤ 0 and so

0 ≥ A \tB − A ≥ (1− t)A + tB − A = t(B − A).

Hence we have A ≤ B. Conversely, if B ≥ A, then we have

Tt(A + ε|B + ε) ≥ Tt(A + ε|A + ε) = 0

for all ε > 0 and so it follows from Lemma 3.5 that Tt(A|B) ≥ 0 as ε → 0.
Next, suppose that A ≥ B. Then we have

Tt(A + ε|B + ε) ≤ Tt(A + ε|A + ε) = 0

and so it follows from Lemma 3.5 that 0 ≥ Tt(A + ε|B + ε) ↘ Tt(A|B) as ε → 0.
Hence we have Tt(A|B) ≤ 0.

Suppose that Tt(A|B) ≤ 0. Put R = (A + B)1/2. By Douglas majorization
theorem, there exist the derivatives D and E such that A1/2 = DR and B1/2 =
ER with kerR ⊂ kerD∩kerE and kerD∗ = kerA and kerE∗ = kerB. In this case,
we have D∗D + E∗E = IR and D∗D commutes with E∗E. For each ε > 0, we
define an operator (E∗E)ε : ranR 7→ ranR by

(E∗E)εx =

{
E∗Ex for x ∈ ranQ[0,1−ε)

εx for x ∈ (ranQ[0,1−ε))
⊥ (3.1)
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where Q[0,1−ε) is the spectral projection of D∗D corresponding to [0, 1− ε). Then
(E∗E)ε is invertible for all ε > 0 and (E∗E)ε ↘ E∗E as ε → 0. Moreover, we
have

R(D∗D \t (E∗E)ε)R ↗ R(D∗D \t E∗E)R as ε → 0.

In fact, since E∗E ≤ (E∗E)ε ≤ E∗E + ε, it follows that

RD∗DR \t R(E∗E + ε)R ≤ R[D∗D \t (E∗E + ε)]R

≤ R[D∗D \t (E∗E)ε]R

≤ R[D∗D \t E∗E]R

for all ε > 0 and by Theorem 2.13, we have

s-lim
ε→0

R[D∗D \t (E∗E)ε]R = A \t B = R(D∗D \t E∗E)R.

Now, suppose that there exists an interval [a, b] such that b < 1/2 and [a, b] ⊂
σ(D∗D). For Rξ ∈ ranQ[a,b], where Q[a,b] is the spectral projection of D∗D
corresponding to [a, b] we have

a〈Rξ,Rξ〉 ≤ 〈Aξ, ξ〉 = 〈D∗DRξ,Rξ〉 ≤ b〈Rξ,Rξ〉
By definition of (E∗E)ε, there exists a constant c ∈ R such that
〈R[D∗D \t (E∗E)ε]Rξ, ξ〉 = c for sufficient small ε > 0. Hence we have

〈R[D∗D \t (E∗E)ε]Rξ, ξ〉 = c = 〈R[D∗D \t E∗E]Rξ, ξ〉
= 〈A \t Bξ, ξ〉 ≥ 〈Aξ, ξ〉 = 〈D∗DRξ,Rξ〉.

Let C∗(D∗D) be a commutative C∗-algebra generated by D∗D and IR, and
then by spectral theorem there is an isometric isomorphism Ψ of C∗(D∗D) onto
C[0, 1] a set of real valued continuous function on [0, 1] such that Ψ(D∗D) = f ,
Ψ(E∗E) = g and Ψ((E∗E)ε) = gε, where f(x) = x, g(x) = 1− x and

gε(x) =

{
1− x for x ∈ [0, 1− ε)
ε for x ∈ [1− ε, 1].

The inequality
〈R[D∗D \t (E∗E)ε]Rξ, ξ〉 ≥ 〈D∗DRξ,Rξ〉

corresponds to x1−tgε(x)t ≥ x and so x ≥ 1/2. Hence we have 〈D∗DRξ,Rξ〉 ≥
1/2〈Rξ,Rξ〉 and this fact contradicts 〈D∗DRξ,Rξ〉 ≤ b〈Rξ,Rξ〉 < 1

2
〈Rξ,Rξ〉.

Hence we have σ(D∗D) ⊂ [1/2, 1]. Thus D∗D ≥ 1
2
IR and E∗E ≤ 1

2
IR and so

A = RD∗DR ≥ RE∗ER = B. �

Finally, to show a lower semi-continuity of Tsallis relative operator entropy
with negative parameters for non-invertible case, we need the following Lemma.
Let A and B be positive operators. Put R = (A + B)1/2 and D, E be derivatives
such that A1/2 = DR and B1/2 = ER. Then we have D∗D + E∗E = IR.

Lemma 3.8. Let A and B be positive operators. If Tt(A|B) exists for some
t ∈ [−1, 0), then

RTt(D
∗D|(E∗E)ε)R ↘ RTt(D

∗D|E∗E)R = Tt(RD∗DR|RE∗ER) = Tt(A|B)

as ε → 0, where (E∗E)ε is defined by (3.1) for ε > 0.
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Proof. Since Tt(A|B) exists, we have

Tt(A|B) =
A \t B − A

t

≤ (1− t)α−tA + tα1−tB − A

t

= R
(1− t)α−tD∗D + tα1−tE∗E −D∗D

t
R

≤ R
(1− t)α−tD∗D + tα1−t(E∗E)ε −D∗D

t
R

for all α > 0 and so

Tt(A|B) ≤ RTt(D
∗D|(E∗E)ε)R

≤ Tt(RD∗DR|R(E∗E)εR)

→ Tt(RD∗DR|RE∗ER) = Tt(A|B)

as ε → 0. Hence we have

RTt(D
∗D|(E∗E)ε)R ↘ RTt(D

∗D|E∗E)R = Tt(A|B).

�

Similarly, we have the relative operator entropy version of Lemma 3.8:

Lemma 3.9. Let A and B be positive operators. If the relative operator entropy
S(A|B) exists, then

RS(D∗D|(E∗E)ε)R ↘ RS(D∗D|E∗E)R = S(RD∗DR|RE∗ER) = S(A|B)

as ε → 0, where S(A|B) is defined by (1.1) and (E∗E)ε is defined by (3.1) for
ε > 0.

For positive invertible case, we have (1.5). Let A and B be positive opera-
tors. For t ∈ (0, 1], Tsallis relative operator entropy Tt(A|B) always exists and
Tt(A|B) ↘ S(A|B) as t ↘ 0. Similarly, we show a lower semi-continuity of Tsallis
relative operator entropy with negative parameters for non-invertible case:

Theorem 3.10. Let A and B be positive operators. If Tt0(A|B) exists for some
t0 ∈ [−1, 0), then

Tt(A|B) ↗ S(A|B) for t0 ≤ t ↗ 0.

Proof. Firstly, we show the monotonicity of Tsallis relative entropy with negative
parameters for non-invertible case. For −1 ≤ t0 < t < s < 0 and x > 0, we have

xt − 1

t
≤ xs − 1

s
≤ log x

and hence

(A + δ) \t(B + ε + δ)− (A + δ)

t
≤ (A + δ) \s(B + ε + δ)− (A + δ)

s

≤ (A + δ)1/2
[
log(A + δ)−1/2(B + ε + δ)(A + δ)−1/2

]
(A + δ)1/2
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for all δ > 0 and ε > 0. Since B + ε is invertible, as δ → 0 we have

A \t (B + ε)− A

t
≤ A \s (B + ε)− A

s
≤ S(A|B + ε).

Hence for −1 ≤ t0 < t < s < 0

Tt0(A|B + ε) ≤ Tt(A|B + ε) ≤ Ts(A|B + ε) ≤ S(A|B + ε)

and since Tt0(A|B) exists, as ε → 0, it follows that Tt(A|B), Ts(A|B) and S(A|B)
exist and we have the desired monotonicity

Tt0(A|B) ≤ Tt(A|B) ≤ Ts(A|B) ≤ S(A|B).

Since Tt(A|B) is monotone increasing for t ↗ 0 and has an upper bound S(A|B),
there exists a strong operator limit T0(A|B) = s-limt↗0 Tt(A|B) and T0(A|B) ≤
S(A|B). By definition, it follows that T0(A|B) has the following properties:

(1) right monotonicity: B ≤ B′ =⇒ T0(A|B) ≤ T0(A|B′);
(2) transformer inequality: X∗T0(A|B)X ≤ T0(X

∗AX|X∗BX) for every X;
(3) right upper semi-continuity: Bn ↘ B =⇒ T0(A|Bn) ↘ T0(A|B).

The third property follows from the same way in the proof of Lemma 3.6 and
Theorem 2.12.

For a given ε > 0, let Q[0,1−ε) be the spectral projection of D∗D corresponding
to [0, 1− ε). For Rξ ∈ ranQ[0,1−ε) we have

〈Tt(D
∗D|(E∗E)ε)Rξ, Rξ〉 = 〈RTt(D

∗D|E∗E)Rξ, ξ〉 = 〈Tt(A|B)ξ, ξ〉.
In fact, for all ε > ε′ > 0

〈Tt(D
∗D|(E∗E)ε′)Rξ,Rξ〉 = 〈Tt(D

∗D|(E∗E)ε)Rξ,Rξ〉 ≥ 〈RTt(D
∗D|E∗E)Rξ, ξ〉

and by Lemma 3.8, we have RTt(D
∗D|(E∗E)ε)R ↘ RTt(D

∗D|E∗E)R = Tt(A|B)
and so 〈Tt(D

∗D|(E∗E)ε)Rξ, Rξ〉 = 〈RTt(D
∗D|E∗E)Rξ, ξ〉.

Also, since Tt(A|B) exists, it follows from Theorem 3.3 that kerA ⊃ kerB and
so kerR = ker(A+B) = kerA∩kerB = kerB. Hence D∗D and E∗E have a trivial
kernel on ranR.

Now, it remains to show that T0(A|B) = S(A|B). Conversely, suppose that
T0(A|B) 6= S(A|B). Then there exist a constant δ0 > 0 and ξ0 ∈ H such that

〈S(A|B)ξ0, ξ0〉 − 〈T0(A|B)ξ0, ξ0〉 = δ0 > 0. (3.2)

On the other hand, by Lemma 3.9

S(A|B) = RS(D∗D|E∗E)R = s-lim
ε→0

RS(D∗D|(E∗E)ε)R

and moreover

T0(A|B) = RT0(D
∗D|E∗E)R = s-lim

ε→0
RT0(D

∗D|(E∗E)ε)R.

In fact, since Tt(A|B) ≤ RTt(D
∗D|E∗E + ε)R for all t0 < t < 0, we have

T0(A|B) ≤ RT0(D
∗D|E∗E + ε)R

≤ T0(RD∗DR|RE∗ER + εR2)

≤ T0(A|B + ε
∣∣∣∣R2

∣∣∣∣) → T0(A|B) as ε → 0
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and so T0(A|B) = RT0(D
∗D|E∗E)R = s-limε→0 RT0(D

∗D|E∗E + ε)R. Note that

T0(RD∗DR|R(E∗E)εR) = RT0(D
∗D|(E∗E)ε)R.

Because by the invertibility of (E∗E)ε, for t ∈ [−1, 0) we have

Tt(RD∗DR|R(E∗E)εR)

≤ 1

t

[
(1− t)α−tRD∗DR + tα1−tR(E∗E)εR−RD∗DR

]
= R · 1

t

[
(1− t)α−tD∗D + tα1−t(E∗E)ε −D∗D

]
R

= R · 1

t

[
(E∗E)1/2

ε Lα,t((E
∗E)−1/2

ε D∗D(E∗E)−1/2
ε , I)(E∗E)1/2

ε −D∗D
]
R

for all α > 0 and so

Tt(RD∗DR|R(E∗E)εR) ≤ R

[
D∗D \t (E∗E)ε −D∗D

t

]
R = RTt(D

∗D|(E∗E)ε)R.

By the transformer inequality of Tt(A|B), we have

RTt(D
∗D|(E∗E)ε)R ≤ Tt(RD∗DR|R(E∗E)εR)

and so RTt(D
∗D|(E∗E)ε)R = Tt(RD∗DR|R(E∗E)εR) for all t ∈ [−1, 0). Hence

as ε → 0 we have T0(RD∗DR|R(E∗E)εR) = RT0(D
∗D|(E∗E)ε)R.

By the discussion above, we have

T0(A|B) ≤ T0(RD∗DR|R(E∗E)εR) = RT0(D
∗D|(E∗E)ε)R

≤ T0(RD∗DR|R(E∗E + ε)R)

≤ T0(A|B + ε
∣∣∣∣R2

∣∣∣∣)
→ T0(A|B) as ε → 0

by the right upper semi-continuity of T0(A|B) and so

T0(A|B) = s-lim
ε→0

RT0(D
∗D|(E∗E)ε)R.

Since Tt(D
∗D|(E∗E)ε) → S(D∗D|(E∗E)ε) as t ↗ 0 by the invertibility of (E∗E)ε,

we have

Tt(RD∗DR|R(E∗E)εR) = RTt(D
∗D|(E∗E)ε)R

→ RT0(D
∗D|(E∗E)ε)R = RS(D∗D|(E∗E)ε)R

as t ↗ 0. For ξ0 in (3.2), we can take ε > 0 such that

0 < 〈RT0(D
∗D|(E∗E)ε)Rξ0, ξ0〉 − 〈T0(A|B)ξ0, ξ0〉 <

1

2
δ0.

However, we have

0 = 〈RS(D∗D|(E∗E)ε)Rξ0, ξ0〉 − 〈RT0(D
∗D|(E∗E)ε)Rξ0, ξ0〉

> 〈S(A|B)ξ0, ξ0〉 − 〈T0(A|B)ξ0, ξ0〉 −
1

2
δ0 =

1

2
δ0

and this contradicts. Hence we have T0(A|B) = S(A|B) and so

Tt(A|B) ↗ S(A|B) for t0 ≤ t ↗ 0.
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