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LIPSCHITZ PROPERTIES OF CONVEX MAPPINGS

S. COBZAŞ

Communicated by M. Omladič

Abstract. The present paper is concerned with Lipschitz properties of con-
vex mappings. One considers the general context of mappings defined on an
open convex subset Ω of a locally convex space X and taking values in a lo-
cally convex space Y ordered by a normal cone. One proves also equi-Lipschitz
properties for pointwise bounded families of continuous convex mappings, pro-
vided the source space X is barrelled. Some results on Lipschitz properties
of continuous convex functions defined on metrizable topological vector spaces
are included as well.

The paper has a methodological character - its aim is to show that some geo-
metric properties (monotonicity of the slope, the normality of the seminorms)
allow to extend the proofs from the scalar case to the vector one. In this way
the proofs become more transparent and natural.

1. Introduction

As it is well known every convex function defined on an open interval of the
real axis is Lipschitz on each compact subinterval of its domain of definition (see,
e.g., [16], Ch.3, §18). This result can be extended to convex functions defined
on convex open subsets of Rn - every such function is locally Lipschitz on Ω
and Lipschitz on every compact subset of Ω. Assuming the continuity of the
convex function the result can be further extended to the case when Ω is an open
convex subset of a normed space (see, e.g., [14]), or of a locally convex space,
[11, 13, 23, 33] (see also [34]).
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Convex mappings (convex operators, convex vector-functions), meaning map-
pings defined on a convex subset of a vector space and with values in an ordered
vector space, have been intensively studied in the last years, mainly in connection
with optimization problems and mathematical programming in ordered vector
spaces, see [4, 5, 6, 24] and the monographs [15, 21]. The normality of the cone is
essential in the proofs of the continuity properties of convex vector-functions and,
as it was remarked by Carioli and Veselý [10], the normality is, in some sense,
also necessary for the validity of these properties (see Section 5).

Lipschitz properties of continuous convex vector functions defined on an open
convex subset of a normed space and with values in a normed space ordered by
a normal cone were proved in [3] and [26].

Equicontinuity results (Banach-Steinhaus type principles) for pointwise boun-
ded families of continuous convex mappings were proved in [20, 25]. Kosmol
[19] proved that a pointwise bounded family of continuous convex mappings,
defined on an open convex subset Ω of a Banach space X and with values in a
normed space Y ordered by a normal cone, is locally equi-Lipschitz on Ω. The
case of real-valued functions was considered in [18]. Jouak and Thibault [17]
proved equicontinuity and equi-Lipschitz results for families of continuous convex
mappings defined on open convex subsets of Baire topological vector spaces or
of barrelled locally convex spaces and taking values in a topological vector space
respectively in a locally convex space, ordered by a normal cone. New proofs of
these results were given in [12]. Breckner and Trif [9] extended these results to
families of rationally s-convex functions. Condensation of singularities principles
for non-equicontinuous families of continuous convex mappings have been proved
in [8].

The present paper has a methodological character - its aim is to show that some
geometric properties (monotonicity of the slope, the normality of the seminorms)
allow to extend the proofs from the scalar case to the vector one. In this way the
proofs become more transparent and natural.

2. Ordered vector spaces and normal cones

As we shall work with functions taking values in ordered vector spaces, we
recall some notions and results on this topic. Details can be found in [1, 2, 7, 32].

A preorder on a nonempty set S is a binary relation on S, denoted ≤, which
satisfies the following properties:

(O1) s ≤ s, for all s ∈ S;

(O2) if s ≤ s
′
and s

′ ≤ s
′′
, then s ≤ s

′′
,

The relation ≤ is called an order if further
(O3) s ≤ s

′
and s

′ ≤ s imply s = s
′
.

Two elements of s, s′ ∈ S are called comparable if s ≤ s′ or s′ ≤ s. If none of
these relations hold, then the elements s, s′ ∈ S are called incomparable. If any
two elements s, s′ ∈ S are comparable, then the set S is called totally preordered
(resp. totally ordered).

A cone in a vector space X is a nonempty subset C of X such that
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(C1) C + C ⊂ C and (C2) R+C ⊂ C .

It is clear that a cone C is a convex set and

αx+ βy ∈ C ,
for all x, y ∈ C, and all α, β ≥ 0 in R.

The relation
x ≤C y ⇐⇒ y − x ∈ C ,

is a vector preorder on X, i.e. a preorder satisfying the conditions:
(OVS1) x ≤ y ⇒ x+ z ≤ y + z;
(OVS2) x ≤ y ⇒ tx ≤ ty ,

for all x, y, z ∈ X and all t ≥ 0.
Conversely, if X is a vector space equipped with a preorder satisfying (OVS1)

and (OVS2), then
X+ := {x ∈ X : x ≥ 0}

is a cone in X, called the cone of positive elements, and the preorder ≤X+ induced
by X+ agrees with ≤.

A vector preorder ≤C induced by a cone C is an order if and only if the cone
C is pointed, i.e.

(C3) C ∩ (−C) = {0} .

Remark 2.1. Some authors (see, e.g., [28]) use the term wedge to designate a
nonempty set satisfying (C1) and (C2), and reserve the term cone for nonempty
sets satisfying (C1)–(C3).

An order interval in an ordered vector space (X,C) is a (possibly empty) set
of the form

[x, y]o = {z ∈ X : x ≤ z ≤ y} = (x+ C) ∩ (y − C), (2.1)

for x, y ∈ X. It is clear that an order interval [x, y]o is a convex subset of X and
that

[x, y]o = x+ [0, y − x]o.

The notation [x, y] will be reserved for algebraic intervals:

[x, y] := {(1− t)x+ ty : t ∈ [0, 1]}.
If the elements x, y are not comparable, then [x, y]o = ∅. If x ≤ y, then

[x, y] ⊂ [x, y]o, but the reverse inclusion could not hold as the following example
shows. Taking X = R2 with the coordinate order and x = (0, 0), y = (1, 1), then
[x, y]o equals the (full) square with the vertices (0, 0), (0, 1), (1, 1) and (0, 1), so
it is larger than the segment [x, y].

A subset A of X is called full (or order-convex, or saturated) if [x, y]o ⊂ A for
all x, y ∈ A. Since the intersection of an arbitrary family of order–convex sets is
order–convex, we can define the order–convex hull [A] of a nonempty subset A
of X as the intersection of all order-convex subsets of X containing A, i.e. the
smallest order–convex subset of X containing A. It follows that

[A] =
⋃
{[x, y]o : x, y ∈ A} = (A+ C) ∩ (A− C).
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Obviously, A is order-convex iff A = [A].
An ordered vector space X is called a vector lattice (or a Riesz space) if every

pair x, y ∈ X admits a supremum x ∨ y. Since

x ∧ y = −[(−x) ∨ (−y)] ,

it follows that every pair of elements in X admits an infimum. The property
extends to finite subsets of X, i.e. every such subset has an infimum and a
supremum.

For x ∈ X one defines

x+ = x ∨ 0, x− = (−x) ∨ 0, |x| = x ∨ (−x) .

It follows

(i) x = x+ − x− and x+ ∧ x− = 0, |x| = x+ + x−, | − x| = |x|;
(ii) ||x| − |y|| ≤ |x+ y| ≤ |x|+ |y| ;
(iii) |x| ≤ a ⇐⇒ (x ≤ a and − x ≤ a) for any a ≥ 0 ;

(iv) |x| ∨ |y| = 1

2

[
|x+ y|+ |x− y|

]
and |x| ∧ |y| = 1

2

∣∣|x+ y| − |x− y|
∣∣ ;

(v) x ≤ y ≤ z ⇒ |y| ≤ |x| ∨ |z| .
(2.2)

We prove only the last assertion (v) from above, which will be used in the proof
of Theorem 6.9 (see also Remark 6.11). The others can be found in every book
on ordered vector spaces (see, for instance, [1, Th. 1.17] or [2, p. 318]).

Observe that

x ≤ y ≤ z ⇒ 0 ≤ y − x ≤ z − x .

By (iv),

|x| ∨ |z| = 1

2

[
|z + x|+ |z − x|

]
=

1

2

[
|z + x|+ z − x

]
≥ 1

2

[
z + x+ y − x

]
=

1

2

[
z + y

]
≥ y .

Since

x ≤ y ≤ z ⇒ −z ≤ −y ≤ −x ,
it follows

|x| ∨ |z| = | − x| ∨ | − z| ≥ −y ,
implying |y| ≤ |x| ∨ |z|.

In fact, the following general principles hold in vector lattices ([2, Th. 8.6 and
Corollary 8.7, p. 318]).

Theorem 2.2.

1. Every lattice identity that is true for real numbers is also true in every
Archimedean Riesz space.

2. If a lattice inequality is true for real numbers, then it is true in any Riesz
space.
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This is due to the fact that every Archimedean Riesz space is lattice isomorphic
to an appropriate function space with the order defined pointwise.

By a lattice equality (inequality) in R one understand an equality (inequality)
expressed in terms of the order, the order operations sup, inf and the algebraic
operations with real numbers.

In the case of an ordered topological vector space (TVS) (X, τ) some connec-
tions between order and topology hold. Let (X, τ) be a TVS with a preorder, or
an order, ≤ generated by a cone C.

We start by a simple result.

Proposition 2.3. The cone C is closed if and only if the inequalities are preserved
by limits, meaning that for all nets (xi : i ∈ I), (yi : i ∈ I) in X,

(∀ i ∈ I, xi ≤ yi and lim
i
xi = x, lim

i
yi = y) =⇒ x ≤ y.

Other results are contained in the following proposition.

Proposition 2.4 ([1], Lemmas 2.3 and 2.4). Let (X, τ) be a TVS ordered by a
τ -closed cone C. Then

1. The topology τ is Hausdorff.
2. The cone C is Archimedean.
3. The order intervals are τ -closed.
4. If (xi : i ∈ I) is an increasing net, which is τ -convergent to x ∈ X, then
x = supi xi.

5. Conversely, if the topology τ is Hausdorff, int(C) 6= ∅ and C is Archimedean,
then C is τ -closed.

Note 2.5. In what follows a cone in a TVS is always supposed to be closed.

Let (X, τ) be a locally convex space ordered by a closed cone C.
The cone C is called normal if the space X admits a neighborhood basis at the

origin formed of C-full sets. It can be shown that in this case Y admits a basis
of 0-neighborhoods formed of absolutely convex C-full sets (see [32, V.3.1]).

A seminorm p on a vector space X is called:

• γ-monotone if 0 ≤ x ≤ y =⇒ p(x) ≤ γp(y);

• γ-absolutely monotone if −y ≤ x ≤ y =⇒ p(x) ≤ γp(y);

• γ-normal if x ≤ z ≤ y =⇒ p(z) ≤ γmax{p(x), p(y)}.
The following characterizations of normal cones hold.

Theorem 2.6 ([7, 32]). Let (X, τ) be a LCS ordered by a cone C. The following
are equivalent.

1. The cone C is normal.
2. The LCS X admits a basis of 0-neighborhoods formed of C-full absolutely

convex sets.
3. There exist γ > 0 and a family of γ-normal seminorms generating the

topology τ of X.
4. There exist γ > 0 and a family of γ-monotone seminorms generating the

topology τ of X.
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5. There exist γ > 0 and a family of γ-absolutely monotone seminorms gen-
erating the topology τ of X.

All the above equivalences hold also with γ = 1 in all places.

A subset Z of a topological vector space (X, τ) is called bounded (or topo-
logically bounded) if it is absorbed by every neighborhood of 0, i.e. for every
neighborhood V of 0, there exists λ > 0 such that λZ ⊂ V .

If X is a locally convex space with the topology generated by a family P of
seminorms, then Z ⊂ X is topologically bounded if and only if

sup{p(z) : z ∈ Z} <∞ ,

for every p ∈ P . If, further, X is a normed space, then Z is topologically bounded
if and only if

sup{‖z‖ : z ∈ Z} <∞ .

A subset Z of a vector space (X,≤) ordered by a cone C is called upper (lower)
o-bounded (o comes from “order”) if there exists y ∈ X such that z ≤ y (resp.
y ≤ z) for all z ∈ Z, where ≤=≤C is the order generated by the cone C. It is
called o-bounded if it is both upper and lower bounded, i.e. there exist x, y ∈ X
such that Z ⊂ [x, y]o, where [x, y]o denotes the order interval determined by x
and y (see (2.1)).

We mention the following result.

Proposition 2.7. Let (X, τ) be a topological vector space ordered by a cone C.

1. If the cone C is normal, then every o-bounded subset of X is topologically
bounded.

2. If X is a locally convex space, then the cone C is normal if and only if
every o-bounded subset of X is topologically bounded.

Proof. We shall justify only the direct assertion 1. Suppose that the cone C is
normal and let Z be an o-bounded subset of X. Then there exist x, y ∈ X such
that Z ⊂ [x, y]o. Let V be a C-full neighborhood of 0 ∈ X. Since V is absorbing,
there exists λ > 0 such that λx, λy ∈ V . It follows [λx, λy]o ⊂ [V ] = V , so that
λZ ⊂ [λx, λy]o ⊂ V . �

3. Some properties of convex vector-functions

We consider now convex mappings from a more general point of view, meaning
mappings with values in an ordered vector space, which are convex with respect
to the vector order and give some simple results that are essential for the proofs
in the following sections.

Let X, Y be real vector spaces and suppose that Y is ordered by a cone C.
If Ω is a convex subset of X, then a mapping f : Ω → Y is called convex (or a
convex operator, or C-convex ) provided

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2)

for all x1, x2 ∈ Ω and α ∈ [0, 1], where ≤:=≤C stands for the order induced by
the cone C, x ≤C y ⇐⇒ y − x ∈ C.

The following results are well known in the case of real-valued convex functions.
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Proposition 3.1. Let I be an interval in R, Y a vector space ordered by a cone
C and ϕ : I → Y a C-convex function.

1. The following equivalent inequalities hold:

(a) ϕ(t2) ≤
t3 − t2
t3 − t1

ϕ(t1) +
t2 − t1
t3 − t1

ϕ(t3);

(b)
ϕ(t2)− ϕ(t1)

t2 − t1
≤ ϕ(t3)− ϕ(t1)

t3 − t1
;

(c)
ϕ(t3)− ϕ(t1)

t3 − t1
≤ ϕ(t3)− ϕ(t2)

t3 − t2
;

(d)
ϕ(t2)− ϕ(t1)

t2 − t1
≤ ϕ(t3)− ϕ(t2)

t3 − t2
,

(3.1)

where ≤:=≤C is the order induced by the cone C.
2. For t0 ∈ I fixed, the slope of ϕ at t0, defined by

∆t0(ϕ)(t) =
ϕ(t)− ϕ(t0)

t− t0
, t ∈ I r {t0} ,

is an increasing function of t, i.e.

ϕ(t)− ϕ(t0)

t− t0
≤ ϕ(t′)− ϕ(t0)

t− t0
,

for all t, t′ ∈ I r {t0} with t < t′.

Proof. The proof is based on the identity

t2 =
t3 − t2
t3 − t1

t1 +
t2 − t1
t3 − t1

t3, (3.2)

valid for all points t1 < t2 < t3 in I, which can be verified by a direct calculation.
The inequality (3.1).(a) follows from (3.2) and the convexity of ϕ.
Isolating in the left-hand side of the inequalities (b),(c),(d) the value ϕ(t2) one

obtains in all cases the inequality (a), proving their equivalence.
2 Follows from 1. �

For x, y ∈ X, x 6= y, the right line D(x, y) and the algebraic segment deter-
mined x, y are given by

D(x, y) = {x+ t(y − x) : t ∈ R} and [x, y] = {x+ t(y − x) : t ∈ [0, 1]} ,
respectively.

Consider now a more general framework.

Proposition 3.2. Let X be a vector space and p a seminorm on X. For x, y ∈ X
such that p(x− y) > 0 put zt = x+ t(y − x), t ∈ R.

1. For every t, t′ ∈ R
p(zt − zt′) = |t− t′| p(y − x) .

2. If z1, z2, z3 are points corresponding to t1 < t2 < t3, then

z2 =
p(z3 − z2)

p(z3 − z2)
z1 +

p(z2 − z1)

p(z3 − z2)
z3 and p(z3 − z1) = p(z2 − z1) + p(z3 − z2) .
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3. Let Ω be a convex subset of X, Y a vector space ordered by a cone C and
f : Ω → Y a C-convex function. For x0 := x + t0(y − x) ∈ D(x, y) ∩ Ω,
the p-slope of f is given by

∆p,x0(f)(zt) =
f(zt)− f(x0)

p(zt − x0)
,

for t ∈ R such that zt ∈ D(x, y) ∩ Ω \ {x0}.
Then t0 < t < t′ or t < t′ < t0 implies

∆p,x0(f)(zt) ≤ ∆p,x0(f)(zt′) , (3.3)

and t < t0 < t′ implies

f(x0)− f(zt)

p(x0 − zt)
≤ f(zt′)− f(x0)

p(zt′ − x0)
( ⇐⇒ −∆p,x0(f)(zt) ≤ ∆p,x0(f)(zt′)) . (3.4)

Proof. The equality from 1 follows by the definition of zt.
For 2, observe that the equality

t2 =
t3 − t2
t3 − t1

t1 +
t2 − t1
t3 − t1

t3

implies

z2 =
t3 − t2
t3 − t1

z1 +
t2 − t1
t3 − t1

z3 .

By 1,
t3 − t2
t3 − t1

=
p(z3 − z2)

p(z3 − z1)
and

t2 − t1
t3 − t1

=
p(z2 − z1)

p(z3 − z1)
,

proving the representation formula for z2.
The equality p(z3 − z1) = p(z2 − z1) + p(z3 − z2) is equivalent to t3 − t1 =

(t3 − t2) + (t2 − t1).
3. Let x0 = x + t0(y − x), z = x + t(y − x) and z′ = x + t′(y − x). The

function ϕ(t) = f(x+ t(y− x)) is convex, so that, by Proposition 3.1, its slope is
increasing. If t0 < t < t′, then

f(z)− f(x0)

p(z − x0)
=

ϕ(t)− ϕ(t0)

(t− t0)p(y − x)
≤ ϕ(t′)− ϕ(t0)

(t′ − t0)p(y − x)
=
f(z′)− f(x0)

p(z′ − x0)
.

The case t < t′ < t0 can be treated similarly. If t < t0 < t′, then

f(x0)− f(z)

p(x0 − z)
=

ϕ(t0)− ϕ(t)

(t0 − t)p(y − x)
≤ ϕ(t′)− ϕ(t0)

(t′ − t0)p(y − x)
=
f(z′)− f(x0)

p(z′ − x0)
.

�

4. Continuity properties of convex functions

In this section, we prove some results on the continuity of convex functions.
We start with real-valued function of one real variable, a typical case. Based

on the monotonicity of the slope one can give a simple proof of the Lipschitz
continuity of convex functions.
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Proposition 4.1. Let ϕ : I → R be a convex function defined on an interval
I ⊂ R. Then ϕ is continuous on int(I) and Lipschitz on every compact interval
[α, β] ⊂ int(I).

Proof. It is obvious that it suffices to check the fulfillment of the Lipschitz condi-
tion. For [α, β] ⊂ int(I) with α < β, let a, b ∈ int(I) be such that a < α < β < b.

Let α ≤ t < t′ ≤ β. By Proposition 3.1.2,

ϕ(t′)− ϕ(t)

t′ − t
≤ ϕ(b)− ϕ(t)

b− t
≤ ϕ(b)− ϕ(β)

b− β
=: B ,

and

A :=
ϕ(α)− ϕ(a)

α− a
≤ ϕ(t′)− ϕ(a)

t′ − a
≤ ϕ(t)− ϕ(t′)

t− t′
.

It follows |ϕ(t)−ϕ(t′)| ≤ L |t−t′|, for all t, t′ ∈ [α, β], where L := max{|A|, |B|}.
�

We mention also the following properties of convex functions.

Proposition 4.2. Let I be an interval in R, ϕ : I → R a convex function and
a < b two points in I.

1. If for some 0 < t0 < 1, ϕ((1 − t0)a + t0b) = (1 − t0)ϕ(a) + t0ϕ(b), then
ϕ is an affine function on the interval [a, b], that is, ϕ((1 − t)a + tb) =
(1− t)ϕ(a) + tϕ(b) for every t ∈ [0, 1].

2. Let a, b ∈ int(I). If ϕ(a) < ϕ(b), then ϕ is strictly increasing on the
interval Ib+ = {α ∈ I : α ≥ b}. If ϕ(a) > ϕ(b), then ϕ is strictly
decreasing on the interval Ia− = {α ∈ I : α ≤ a}.

3. Any nonconstant convex function ϕ : R → R is unbounded, more exactly
supϕ(R) = +∞.

4. Let ϕ : [0,∞) → [0,∞) be convex such that ϕ(α) = 0 ⇐⇒ α = 0. Then
ϕ is strictly increasing and superadditive, that is,

ϕ(α+ β) ≥ ϕ(α) + ϕ(β) ,

for all α, β ∈ [0,∞).
If ϕ : [0,∞) → [0,∞) is concave and ϕ(α) = 0 ⇐⇒ α = 0, then ϕ is

increasing and subadditive, that is,

ϕ(α+ β) ≤ ϕ(α) + ϕ(β) ,

for all α, β ∈ [0,∞).

Proof. 1. Suppose that for some t, t0 < t < 1, ϕ(a+ t(b− a)) < ϕ(a) + t(ϕ(b)−
ϕ(a)). Let c = a + t0(b − a) and ct = a + t(b − a). It follows 0 < t0/t < 1, c =
a+ t0

t
(ct − a), and

ϕ(c) =ϕ(a) + t0(ϕ(b)− ϕ(a)) =

(
1− t0

t

)
ϕ(a) +

t0
t
[ϕ(a) + t(ϕ(b)− ϕ(a))]

>

(
1− t0

t

)
ϕ(a) +

t0
t
ϕ(ct),

in contradiction to the convexity of f.
The case 0 < t < t0 can be treated similarly.
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2. Suppose that ϕ(a) < ϕ(b) and let α > b be a point in I. Then, by the
monotonicity of the slope,

ϕ(α)− ϕ(b)

α− b
≥ ϕ(b)− ϕ(a)

b− a
> 0 =⇒ ϕ(α) > ϕ(b) .

If b < α < α′ belong to I, then ϕ(α) > ϕ(b), and applying the above reasoning
to the points b < α < α′, it follows ϕ(α) < ϕ(α′).

In the case ϕ(a) > ϕ(b), a similar argument applied to points α ∈ I with α < a
shows that ϕ is strictly decreasing on Ia−.

3. Suppose that there exists two points a < b in R such that ϕ(a) 6= ϕ(b).
Case I. ϕ(b)− ϕ(a) > 0
Let αt = a+ t(b− a), t > 1. The monotonicity of the slope implies

ϕ(αt)− ϕ(a)

αt − a
≥ ϕ(b)− ϕ(a)

b− a
.

Since αt − a = t(b− a) > 0, it follows

ϕ(αt)− ϕ(a) ≥ t (ϕ(b)− ϕ(a)) → +∞ as t→∞ .

Case II. ϕ(b)− ϕ(a) < 0
Taking αt = a + t(b − a) for t < 0, it follows αt < a < b, so that, by the

monotonicity of the slope,

ϕ(αt)− ϕ(a)

αt − a
≤ ϕ(b)− ϕ(a)

b− a
.

Since, in this case, αt − a = t(b− a) < 0, it follows

ϕ(αt)− ϕ(a) ≤ t (ϕ(b)− ϕ(a)) → +∞ as t→ −∞ .

4. By 2, ϕ is strictly increasing on [0,∞) because ϕ(α) > 0 = ϕ(0) for every
α > 0.

Let now 0 < α < β. Then, by the convexity of ϕ,

ϕ(α) = ϕ

((
1− α

β

)
0 +

α

β
β

)
≤ α

β
ϕ(β) ,

so that

αϕ(β)− βϕ(α) ≥ 0 . (4.1)

Again, by the convexity of ϕ,

ϕ(β) ≤ α

β
ϕ(α) +

β − α

β
ϕ(α+ β)

implying

ϕ(α+ β) ≥ αϕ(β)− βϕ(α)

β − α
+ ϕ(α) + ϕ(β)

(4.1)

≥ ϕ(α) + ϕ(β) .

Suppose now that ϕ is concave and not increasing on [0,∞). Then there exist
two numbers 0 < α < β such that ϕ(α) > ϕ(β). Let αt = α + t(β − α) with
t > 1. Since the slope of ϕ is decreasing, we have
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ϕ(αt)− ϕ(α)

αt − α
≤ ϕ(β)− ϕ(α)

β − α
,

implying

ϕ(αt) ≤ −ϕ(α) + t(ϕ(β)− ϕ(α)) −→ −∞ as t→∞ .

Consequently, ϕ(αt) < 0 for t large enough, in contradiction to the hypothesis
that ϕ ≥ 0.

The proof of the subadditivity follows the same line (reversing the inequalities)
as the proof of superadditivity in the case of a convex function. �

Remark 4.3. Geometrically, the property 1 from Proposition 4.2 says that if a
point (t0, ϕ(t0)), with a < t0 < b, belongs to the segment [A,B] where A(a, ϕ(a))
and B(b, ϕ(b)) are points on the graph of ϕ, then the graph of ϕ for t ∈ [a, b]
agrees with the segment [A,B].

The example of the function ϕ(t) = t for t ∈ [0, 1] and ϕ(t) = 1 for t ≥ 1 shows
that a concave function satisfying the hypotheses from Proposition 4.2.4, can be
only increasing, not strictly.

We consider now a more general situation.

Proposition 4.4. Let X be a TVS, Ω ⊂ X open and convex and f : Ω → R a
convex function.

1. If the function f is bounded from above on a neighborhood of some point
x0 ∈ Ω, then f is continuous at x0.

2. If there exists a point x0 ∈ Ω and a neighborhood U ⊂ Ω of x0 such that
f is bounded from above on U , then f is locally bounded from above on
Ω, that is, every point x ∈ Ω has a neighborhood V ⊂ Ω such that f is
bounded from above on V.

3. If the function f is bounded from above on a neighborhood of some point
x0 ∈ Ω, then f is continuous on Ω.

Proof. 1. Let U be a balanced neighborhood of 0 such that x0 +U ⊂ Ω and, for
some β > 0, f(x) ≤ β for all x ∈ x0 + U, or, equivalently, to f(x0 + u) ≤ β for
all u ∈ U.

For 0 < ε < 1, ±εu ∈ U and, by the convexity of f ,

f(x0+εu)−f(x0) = f((1−ε)x0+ε(x0+u))−f(x0) ≤ (1−ε)f(x0)+εf(x0+u)−f(x0),

so that

f(x0 + εu)− f(x0) ≤ ε(f(x0 + u)− f(x0)) ≤ ε(β − f(x0)). (4.2)

On the other side

f(x0) = f

(
x0 + εu+ x0 − εu

2

)
≤ 1

2
f(x0 + εu) +

1

2
f(x0 − εu),

implying

f(x0)− f(x0 + εu) ≤ f(x0 − εu)− f(x0) ≤ ε(β − f(x0)). (4.3)
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The last inequality from above follows by replacing u with −u in (4.2). Now,
by (4.2) and (4.3) it follows

|f(x0 + εu)− f(x0)| ≤ ε(β − f(x0)) for all u ∈ U,

which is equivalent to

|f(x0 + v)− f(x0)| ≤ ε(β − f(x0)) for every v ∈ εU,

which shows that f is continuous at x0.
2. The proof has a geometric flavor and can be nicely illustrated by a drawing.

Let U be a balanced neighborhood of 0 such that x0+U ⊂ Ω and, for some β > 0,
f(x) ≤ β for all x ∈ x0 + U.

Let x ∈ Ω. Since the set Ω is open, there exists α > 1 such that x1 :=
x0 + α(x − x0) ∈ Ω, implying x = 1

α
x1 + (1 − 1

α
)x0. Putting t = 1/α it follows

x = (1− t)x0 + tx1 with 0 < t < 1. Consider the neighborhood V := x+(1− t)U
of x. We have V ⊂ Ω, because, by the convexity of Ω,

x+ (1− t)u = tx1 + (1− t)(x0 + u) ∈ tΩ + (1− t)Ω ⊂ Ω,

for all u ∈ U.
Also

f (x+ (1− t)u) =f (tx1 + (1− t)(x0 + u)) ≤ tf(x1) + (1− t)f(x0 + u)

≤tf(x1) + (1− t)β,

for every u ∈ U.
3. The assertion from 3 follows from 1 and 2. �

Based on this results one can give a characterization of the continuity of a
convex function in terms of its epigraph. Let X be a vector space, Ω a nonempty
subset of X and f : Ω → R a function. Let

epi(f) = {(x, α) ∈ X × R : f(x) ≤ α} and

epi′(f) = {(x, α) ∈ X × R : f(x) < α} ,

be the epigraph and, respectively, the strict epigraph of f .
The following result is a direct consequence of the definitions.

Proposition 4.5. Let X be a vector space, Ω ⊂ X a convex set and f : Ω → R
a function. The following equivalences hold:

the function f is convex ⇐⇒ epi(f) is a convex subset of X × R
⇐⇒ epi′(f) is a convex subset of X × R .

We can characterize now the continuity of f .

Proposition 4.6. Let X be a TVS, Ω ⊂ X nonempty open convex and f : Ω → R
a convex function.

1. (a) int(epi(f)) ⊂ epi′(f);
(b) if f is continuous at x ∈ Ω, then (x, α) ∈ int(epi(f) for all α > f(x);
(c) if (x, α) ∈ int(epi(f), then f is continuous at x.
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2. The following are equivalent:
(i) f is continuous on Ω;
(ii) int(epi(f)) 6= ∅;
(iii) epi′(f) is an open subset of X × R.

3. If int(epi(f)) 6= ∅, then int(epi(f)) = epi′(f).

Proof. 1.(a) If (x, α) ∈ int(epi(f)), then there exist a neighborhood U of 0 ∈
X and δ > 0 such that W := (x + U) × (α − δ, α + δ) ⊂ epi(f). But then
(x, α− δ/2) ∈ W ⊂ epi(f) so that f(x) ≤ α− δ/2 < α, that is, (x, α) ∈ epi′(f).

(b) Let W ⊂ epi(f) be as above. Then, for every u ∈ U, (x + u, α) ∈ W ⊂
epi(f), so that f(x+ u) ≤ α for all u ∈ U , which, by Proposition 4.4, implies the
continuity of f at x.

(c) Suppose that f is continuous at x ∈ Ω and let α > f(x). Then δ :=
(α− f(x))/2 > 0 and there exists a neighborhood U of 0 ∈ X such that

f(x+ u) < f(x+ δ) = α− δ < α ,

for all u ∈ U . It follows that the neighborhood (x + U)× (α − δ,∞) of (x, α) is
contained in epi(f), which implies that (x, α) ∈ int(epi(f)).

2. Notice that, by Proposition 4.4, the continuity of f at a point x ∈ Ω is
equivalent to the continuity of f on Ω.

(i) ⇐⇒ (ii) follows from the assertions (b) and (c) of point 1 of the proposition.
(i) ⇒ (iii).
Suppose that f is continuous on Ω. If (x, α) ∈ epi′(f), then f(x) < α so

that, by 1, (b) and (a), (x, α) ∈ int(epi(f)) ⊂ epi′(f). It follows that int(epi(f))
is a neighborhood of (x, α) contained in epi′(f), that is, (x, α) ∈ int(epi′(f)).
Consequently epi′(f) ⊂ int(epi′(f)) and so epi′(f) = int(epi′(f)) is open.

(iii) ⇒ (i)
If epi′(f) is open, then, ∅ 6= epi′(f) ⊂ int(epi(f)) so that (ii) holds, which

implies the continuity of f .
3. If int(epi(f)) 6= ∅, then f is continuous on Ω, so that epi′(f) is open. The

inclusion epi′(f) ⊂ int(epi(f)) implies epi′(f) ⊂ int(epi(f)) and so, taking into
account 1.(a), epi′(f) = int(epi(f)). �

The following proposition shows that in the finite dimensional case the convex
functions are continuous.

Proposition 4.7. Let f : Ω ⊆ Rn → R be a convex function, where the set Ω is
open and convex. Then f is locally bounded from above on Ω.

Consequently, f is continuous on Ω.

Proof. Let us choose x0 ∈ Ω and K ⊆ Ω be a hypercube having the center in x0.
We are going to prove that f is bounded from above on K.
If v1, ..., vm, where m = 2n, are the vertices of K, then for each x ∈ K there

exist λ1, ..., λm ∈ [0, 1],
m∑

k=1

λk = 1, such that x =
m∑

k=1

λkvk.

Taking into account Jensen’s inequality for convex functions, we obtain that

f(x) = f(
m∑

k=1

λkvk) ≤
m∑

k=1

λkf(vk) ≤ max
k∈{1,2,...,m}

f(vk) ,
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and therefore f is bounded from above on K. �

A convex function defined on an infinite dimensional normed linear space is
not necessarily locally bounded as the following example shows.

Example 4.8. Let X be the space of polynomials endowed with the norm given
by

‖P‖ = max
x∈[−1,1]

|P (x)| .

Then the function f : X → R given by

f(P ) = P ′(1)

for each P ∈ X is convex (even linear) but it is not locally bounded.

Consider for each n ∈ N the polynomial

Pn(x) =
1√
n
xn.

Then

‖Pn‖ =
1√
n
→ 0, n→∞,

but
f(Pn) =

√
n→∞, n→∞ ,

proving the discontinuity of the functional f .

Remark 4.9. In fact a normed space X is finite dimensional if and only if every
linear functional on X is continuous. On the other hand there exists infinite
dimensional locally convex spaces X such that every convex function on X is
continuous.

Indeed, it is known that every linear functional on a finite dimensional topo-
logical vector space is continuous. If X is an infinite dimensional normed space
then it contains a linearly independent set D = {en : n ∈ N} ⊂ SX . Con-
sider a Hamel basis E of X containing this set and define ϕ : E → R by
ϕ(en) = n, n ∈ N, and ϕ(e) = 0 for e ∈ E r D, extended by linearity to whole
X. Then sup{ϕ(x) : x ∈ X, ‖x‖ ≤ 1} ≥ sup{ϕ(en) : n ∈ N} = ∞, proving the
discontinuity of ϕ.

Concerning the second affirmation, letX be an infinite dimensional vector space
equipped with the finest locally convex topology τ . A neighborhood basis at 0 for
this topology is formed by all absolutely convex absorbing subsets of X. A family
of seminorms generating this topology is formed of the Minkowski functionals of
these neighborhoods. Since every seminorm p onX is the Minkowski functional of
the absolutely convex absorbing subset Bp = {x ∈ X : p(x) ≤ 1}, it follows that τ
is generated by the family P of all seminorms on X. It is in fact characterized by
this property: the finest locally convex topology on a vector space X is the locally
convex topology τ on X such that every seminorm on X is τ -continuous. For the
finest locally convex topology on a vector space, see [32, p. 56 and Exercise 7,
p. 69] and [29, pp. 3–4]. It follows that every convex absorbing subset of X is
a neighborhood of 0 and every linear functional is continuous on X. Also every
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convex function defined on a nonempty open convex subset Ω of X is continuous
on Ω.

For the convenience of the reader we sketch the proof following [13], where
further details can be found.

Fact 1. If C is a convex subset of vector space such that 0 ∈ C, then αC ⊂ βC
for all 0 < α < β.

Indeed, by the convexity of C and the fact that 0 ∈ C,

αc = β

(
α

β
c+

(
1− α

β

)
· 0

)
∈ βC ,

for all c ∈ C.

Fact 2. Let Y be a vector space equipped with the finest local convex topology
τ . Then every convex absorbing subset C of Y is a neighborhood of 0.

The set D := C ∩ (−C) is absolutely convex and contains 0. For x ∈ Y there
exist α, β > 0 such that x ∈ αC and −x ∈ βC ⇐⇒ x ∈ β(−C). Then, by Fact
1, x ∈ γC ∩ γ(−C), where γ = max{α, β}. This implies that there exist c, c′ ∈ C
such that x = γc and x = γ(−c′). But then c = −c′ ∈ −C, that is, x ∈ γD.
Since D is absolutely convex and absorbing it is a neighborhood of 0 as well as
C ⊃ D.

Fact 3. Let X be a vector space. Consider the space X × R equipped with the
finest locally convex topology and X with the induced topology. If Ω is an open
convex subset of X, then every convex function f : Ω → R is continuous.

For more clarity we denote by θ the null element in X.

We can suppose, passing, if necessary, to the set Ω̃ := Ω−x0 and to the function

f̃(x) := f(x+ x0)− f(x0)− 1, x ∈ Ω̃, that θ ∈ Ω and f(θ) < 0.
The convex function f is continuous on Ω if and only if it is continuous at

θ ∈ Ω. In its turn, by Proposition 4.6, this holds if the strict epigraph epi′(f) :=
{(x, α) ∈ X × R : f(x) < α} is a neighborhood of (θ, 0) in X × R. By Fact 2,
epi′(f) is a neighborhood of (θ, 0) in X×R if it is convex and absorbing in X×R.

The convexity of epi′(f) follows from the convexity of f .
Let us show that epi′(f) is absorbing. Consider first the case (θ, α) ∈ X×R. If

α > f(θ), then (θ, α) ∈ epi′(f). If α ≤ f(θ) < 0, then, as limγ↘0 γα = 0, it follows
γα > f(θ) for sufficiently small positive γ, that is, γ(θ, α) = (θ, γα) ∈ epi′(f).
Let now (x, α) ∈ X × R with x 6= θ. Then I := {t ∈ R : tx ∈ Ω} is an open
interval in R and g : I → R, g(t) := f(tx), t ∈ I, is convex, and so continuous.
But then epi′(g) is an open convex subset of R2. Since g(0) = f(θ) < 0, it follows
that (0, 0) ∈ epi′(g), hence, by Proposition 4.6, epi′(g) is a neighborhood of (0, 0),
and so an absorbing set in R2. Let λ > 0 be such that (λ, λα) = λ(1, α) ∈ epi′(g).
The equivalences

(λ, λα) ∈ epi′(g) ⇐⇒ g(λ) < λα ⇐⇒ f(λx) < λα

⇐⇒ λ(x, α) = (λx, λα) ∈ epi′(f) ,

show that λ(x, α) ∈ epi′(f) and so epi′(f) is an absorbing subset of X × R.



36 S. COBZAŞ

5. Some further properties of convex vector-functions

Now we shall present, following [26], some further results on C-convex map-
pings.

Let X be a TVS, Y a vector space ordered by a cone C and Ω an open subset
of X. We say that a mapping f : Ω → Y is locally o-bounded on Ω if every point
in Ω has a neighborhood on which f is o-bounded.

The following proposition is the analog of Proposition 4.4 with boundedness
replaced by o-boundedness.

Proposition 5.1. Let X, Y be as above and suppose that Ω ⊂ X is open and
convex and f : Ω → Y a C-convex mapping.

1. If f upper o-bounded on a neighborhood of some point x0 ∈ Ω, then f is
locally o-bounded on Ω.

2. If Y is a TVS ordered by a normal cone C and f is o-bounded on a
neighborhood of a point x0 ∈ Ω, then f is continuous at x0.

3. If the cone C is normal and f is upper o-bounded on a neighborhood of
some point x0 ∈ Ω, then f is continuous on Ω.

Proof. 1. Let U be a balanced 0-neighborhood and let y ∈ Y be such that
x0 + U ⊂ Ω and f(x0 + u) ≤ y for all u ∈ U . Then −u ∈ U and

f(x0) ≤
1

2
[f(x0 + u) + f(x0 − u)]

implies

f(x0)− f(x0 + u) ≤ f(x0 − u)− f(x0) ≤ y − f(x0) .

It follows

f(x0 + u) ≥ 2f(x0)− y ,

for all u ∈ U , showing that f is also lower o-bounded on x0 + U .
The fact that f is locally o-bounded on Ω can be proved similarly to the proof

of assertion 2 in Proposition 4.4.
2. Suppose first that 0 ∈ Ω and f(0) = 0. Let U ⊂ Ω be a balanced neigh-

borhood of 0 such that f is o-bounded on U , that is, the set f(U) is o-bounded
in Y . Since the cone C is normal it follows that f(U) is topologically bounded.
Let V be a balanced C-full neighborhood of f(0) = 0 ∈ Y . The boundedness of
f(U) implies the existence of λ > 0 such that λf(U) ⊂ V . Since V is balanced
we can suppose further that λ < 1.

By the convexity of f

f(λu) = f((1− λ)0 + λu) ≤ (1− λ)f(0) + λf(u) = λf(u) ∈ V ,

for all u ∈ U .
Also

0 = f(0) ≤ 1

2
[f(−λu) + f(λu)]

implies

f(λu) ≥ −f(−λu) = −f(λ(−u)) ≥ −λf(−u) ∈ V .
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Consequently, −λf(−u) ≤ f(λu) ≤ λf(u), with −λf(−u), λf(u) ∈ V. Since
V is C-full, this implies f(λu) ∈ V for all u ∈ U . Since λU is a neighborhood of
0 ∈ X and f(λU) ⊂ V , this proves the continuity of f at 0.

In general, for x0 ∈ Ω consider the set W̃ = −x0 + Ω and the function f̃ :

Ω̃ → Y given by f̃(z) = f(x0 + z) − f(x0). It follows that f̃ is o-bounded on

a neighborhood U ⊂ Ω̃ of 0 ∈ X, so that it is continuous at 0, implying the
continuity of the mapping f at x0 ∈ Ω. �

Carioli and Veselý [10] showed that the normality of the cone C is, in some
sense, necessary for the continuity of upper o-bounded convex vector-functions.

Theorem 5.2. Let I ⊂ R be an open interval, X a (nontrivial) locally convex
space, Ω ⊂ X an open, convex set and Y a Banach space ordered by a closed cone
C. The following assertions are equivalent.

1. The cone C is normal.
2. Every convex function ϕ : I → Y is continuous.
3. Every convex function ϕ : I → Y is locally norm bounded.
4. Every convex function f : Ω → Y , which is upper o-bounded on some open

subset of Ω, is continuous.
5. Every convex function f : Ω → Y , which is upper o-bounded on some

nonempty open subset of Ω, is locally norm bounded.

The proof follows the following steps.

Step 1. If Y is a Banach space ordered by a closed cone C, which is not
normal, then there exists w ≥ 0 in Y such that the order interval [0, w]o is norm-
unbounded.

Since C is not normal there exist two sequences (xn) and (yn) in Y such that
0 ≤ xn ≤ yn, ‖yn‖ = 1 and ‖xn‖ = 3n. One takes w =

∑∞
k=1 2−kyk and

zn = w −
n−1∑
k=1

2−kyk − 2−nxn = w −
n∑

k=1

2−kyk + 2−n(yn − xn).

Then 0 ≤ zn ≤ w and

‖zn‖ ≥
(

3

2

)n

−
∥∥w − n−1∑

k=1

2−kyk

∥∥ −→∞ as n→∞ .

Step 2. Let Y and C be as in Step 1. Then there exists a continuous convex
function ϕ : R → Y locally upper o-bounded on R, which is norm-unbounded on
every neighborhood of 0.

Let [0, w]o the norm-unbounded interval given by Step 1. Then the interval
[αw, βw]o is also norm-unbounded for every 0 ≤ α < β. Take the numbers λ, α
with λ ∈ (0, 1) and 1 < α < λ−1(1 − λ + λ2). Since 1 − λ + λ2 > λ, α is well
defined. Consider the intervals ∆n := [λ2nw,αλ2nw]o for n ∈ N0 := N ∪ {0}.
Since αλ < 1− λ+ λ2 < 1, it follows αλ2n+2w ≤ λ2nw and αλ2n+2w 6= λ2nw, so
that the intervals ∆n are pairwise disjoint and z′ ≤ z for z ∈ ∆n, z

′ ∈ ∆n′ with
n < n′.
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Choose wn ∈ ∆n such that ‖wn‖ > n and define the function ϕ : R → Y
by ϕ(t) = 0 for t ∈ (−∞, 0], ϕ(λk) = wk, k ∈ N0, and affine on each interval
[λn+1, λn]. Then ϕ(t) = ϕn(t) for t ∈ [λn+1, λn], where

ϕn(t) =
λnwn+1 − λn+1wn

λn − λn+1
+ µnt , with µn =

wn − wn+1

λn − λn+1
.

Put also ϕ(t) = ϕ0(t) for t > 1. One shows that µn+1 ≤ µn and that the
so defined function ϕ is C-convex. Since ‖ϕ(λn)‖ = ‖wn‖ → ∞, it is norm-
unbounded on every neighborhood of 0 ∈ R. Since it takes values in [0, w]o, it is
o-bounded, and so locally o-bounded on R.

Step 3. Let X be a nontrivial Hausdorff locally convex space, and Y and C as
in Step 1. Then there exists a continuous convex function f : X → Y , which is
locally upper o-bounded on some neighborhood of 0 and norm-unbounded on every
neighborhood of 0.

Let [0, w]o be the norm-unbounded interval given by Step 1 and ϕ : R → Y the
convex function given by Step 2. For a fixed element v ∈ X r {0} there exists
a continuous linear functional x∗ ∈ X∗ such that x∗(v) = 1. Define the function
f : X → Y by f(x) = ϕ(x∗(x)), x ∈ X. Then f is convex, continuous and

‖f(λnv)‖ = ‖ϕ(λn‖ = ‖wn‖ → ∞ as n→∞ .

The function f is order bounded on every neighborhood Vε of 0 ∈ X of the
form Vε = {x ∈ X : |x∗(x)| < ε}, ε > 0.

6. Lipschitz properties of convex vector-functions

In this section, we shall prove some results on Lipschitz properties for convex
vector-functions, meaning convex functions with respect to a cone.

6.1. Convex functions on locally convex spaces. We define first Lipschitz
functions between locally convex spaces.

Definition 6.1. Let (X,P ) and (Y,Q) be locally convex spaces, where P,Q
are directed families of seminorms generating their topologies, and A ⊆ X. A
function f : A → Y is said to satisfy the Lipschitz condition (or that f is a
Lipschitz function) if for each q ∈ Q there exist p ∈ P and L = Lq ≥ 0 such that

q(f(x)− f(y)) ≤ Lp(x− y),

for all x, y ∈ A.
The function f is called locally Lipschitz on A if every point x ∈ A has a

neighborhood V such that f is Lipschitz on V ∩ A
Remark 6.2. It is easy to check that the definition does not depend on the (di-
rected) families of seminorms P,Q generating the locally convex topologies on X
and Y , respectively.

Remark 6.3. If X and Y are Banach spaces then the above definition coincides
with the standard definition (with respect to the metrics generated by the norms).

If Y = K, then f : A→ R is Lipschitz if there exist p ∈ P and L > 0 such that

|f(x)− f(y)| ≤ Lp(x− y),
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for all x, y ∈ A.

The next theorem shows that continuous convex vector-functions defined on
open convex subsets of locally convex spaces are locally Lipschitz. For a seminorm
p on a vector space X we use the notations

Bp = {x ∈ X : p(x) ≤ 1} and B′
p = {x ∈ X : p(x) < 1} .

Arbitrary balls satisfy the equalities

Bp[x0, r] := {x ∈ X : p(x− x0) ≤ r} = x0 + rBp , and

Bp(x0, r) := {x ∈ X : p(x− x0) < r} = x0 + rB′
p ,

for x0 ∈ X and r > 0

Theorem 6.4. Let (X,P ), (Y,Q) be locally convex spaces, C a normal cone in
Y and Ω an open convex subset of X.

If f : Ω → Y is a continuous convex mapping then f is locally Lipschitz on Ω.
Furthermore, f is Lipschitz on every compact subset of Ω.

We start with the following proposition, the key tool in the proof of the theorem.

Proposition 6.5. Let X be a vector space, x0 ∈ X, p a seminorm on X, Y a
vector space ordered by a cone C and let q be the Minkowski functional of an
absolutely convex C-full absorbing subset W of Y .

For R > 0 let V = Bp[x0, R] and let f : V → Y be a C-convex function.
If, for some β > 0, q(f(x)) ≤ βp(x) for all x ∈ V , then for every 0 < r < R,

q(f(x)− f(y)) ≤ 2β

R− r
p(x− y) ,

for all x, y ∈ Bp[x0, r].

We need the following simple remark.

Lemma 6.6 ([7], Prop. 2.5.6). Let Y be a vector space ordered by a cone C. If W
is a C-full absolutely convex absorbing subset of Y then the Minkowski functional
q of W is a seminorm, satisfying the condition

q(y) ≤ max{q(x), q(z)} ,
for all x, y, z ∈ Y with x ≤ y ≤ z.

Proof. Let a := max{q(x), q(z)}. Then, for every ε > 0, q(x), q(z) < a+ ε, so, by
the definition of the Minkowski functional, there exist b, c ∈ (0, a + ε) such that
x ∈ bW and z ∈ cW . Since W is balanced,

bW = (a+ ε)
b

a+ ε
W ⊂ (a+ ε)W ,

and
cW = (a+ ε)

c

a+ ε
W ⊂ (a+ ε)W ,

implying (a + ε)−1x, (a + ε)−1z ∈ W . Since W is C-full and (a + ε)−1x ≤
(a+ ε)−1y ≤ (a+ ε)−1z it follows (a+ ε)−1y ∈ W or, equivalently, y ∈ (a+ ε)W .
But then q(y) ≤ a+ ε. Since ε > 0 was arbitrarily chosen, this implies

q(y) ≤ a = max{q(x), q(z)} .
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�

Proof of Proposition 6.5. Let x, y ∈ Bp[x0, r], x 6= y.
Case I. p(x− y) = 0.
In this case the line D(x, y) := x+ R(y − x) is contained in Bp[x0, r].
For t > 1 let zt = y+t(x−y) and z′t = x+t(y−x). Then x = (1−t−1)y+t−1zt

and y = (1− t−1)x+ t−1z′t, so that, by the convexity of f,

f(x) ≤ (1− t−1)f(y) + t−1f(zt)

implying

f(x)− f(y) ≤ t−1(f(zt)− f(y)).

Interchanging the roles of x and y one obtains

f(y)− f(x) ≤ t−1(f(z′t)− f(x)) ⇐⇒ f(x)− f(y) ≥ t−1(f(x)− f(z′t))

But then, by Lemma 6.6,

q(f(x)− f(y)) ≤ max{t−1q(f(zt)− f(y)), t−1q(f(x)− f(z′t))} ≤
2β

t
.

Letting t→∞, one obtains q(f(x)− f(y)) = 0.
Case II. p(x− y) > 0.
The function ψ : R → R defined by ψ(t) = p(x − x0 + t(y − x)), t ∈ R, is

continuous and ψ(0) = p(x− x0) ≤ r < R, ψ(1) = p(y − x0) ≤ r < R.
The inequality

ψ(t) ≥ |t|p(y − x)− p(x− x0)

shows that lim|t|→∞ ψ(t) = ∞, so that there are a < 0 and b > 1 such that

ψ(a) = R and ψ(b) = R.

Putting u := x+ a(y − x) and v := x+ b(y − x) , it follows

u− x = x− x0 + a(y− x)− (x− x0) and v− y = x− x0 + b(y− x)− (y− x0) ,

so that
p(u− x) ≥ψ(a)− p(x− x0) ≥ R− r and

p(v − y) ≥ψ(b)− p(y − x0) ≥ R− r.
(6.1)

Appealing to (3.4), it follows

f(x)− f(u)

p(x− u)
≤ f(y)− f(x)

p(y − x)
≤ f(v)− f(y)

p(v − y)
. (6.2)

By hypothesis and the inequalities (6.1), q((f(x)− f(u))/p(x− u)) ≤ 2β(R−
r)−1 and q((f(v)− f(y))/p(v − y)) ≤ 2β(R− r)−1, so that, by Lemma 6.6,

q

(
f(y)− f(x)

p(y − x)

)
≤ 2β

R− r
⇐⇒ q(f(y)− f(x)) ≤ 2β

R− r
p(y − x) .

�
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Remark 6.7. If Y = R the case p(x− y) = 0 can be treated appealing to Propo-
sition 4.2. Indeed, as we have seen, in this case D(x, y) ⊂ Bp[x0, r], so we can
consider the convex function ϕ : R → R, ϕ(t) = f(x + t(y − x)), t ∈ R. By
hypothesis the function ϕ is bounded, so that by Proposition 4.2.2, it is constant.
But then f(x) = ϕ(0) = ϕ(1) = f(y).

Proof of Theorem 6.4. Suppose that P is directed and that the seminorms in Q
are the Minkowski functionals of the members of a neighborhood base of 0 ∈ Y
formed of absolutely convex C-full sets ([32, V.3.1]).

Let x0 ∈ Ω and q ∈ Q. The continuity of f at x0 implies the existence of a
seminorm p ∈ P and of R > 0 such that V := x0 +RBp ⊂ Ω and

q(f(x)) ≤ 1 ∀x ∈ V.
If 0 < r < R then, by Proposition 6.5,

q(f(x)− f(y)) ≤ 2

R− r
p(x− y)

for all x, y ∈ x0 + rBp.
Let us show now that f is Lipschitz on every compact subset K of Ω. Let

q ∈ Q be the Minkowski functional of a C-full absolutely convex neighborhood
of 0 ∈ Y. By the first part of the proof, for every x ∈ K there are px ∈ P, Lx > 0
and rx > 0 such that Ux := x+ rxB

′
px
⊂ Ω and

q(f(u)− f(v)) ≤ Lxpx(u− v) ∀u, v ∈ Ux.

The compactness of K implies the existence of a finite set {x1, ..., xn} ⊂ K such
that

K ⊂
n⋃

i=1

Ui,

where Ui = Uxi
. Put pi = pxi

, ri = rxi
, Li = Lxi

, and let p ∈ P, p ≥ pi, i =
1, ..., n and L = max{L1, ..., Ln}. We show that

q(f(x)− f(y)) ≤ Lp(x− y)

for all x, y ∈ K.
Let x, y be distinct points in K. Suppose first that p(x − y) > 0. If i, j ∈

{1, ..., n} are such that x ∈ Ui and y ∈ Uj then, since these sets are open, there
exist a < 0 and b > 1 such that

u := x+ a(y − x) ∈ Ui and v := x+ b(y − x) ∈ Uj.

Now, by (3.4),

f(x)− f(u)

p(x− u)
≤ f(y)− f(x)

p(y − x)
≤ f(v)− f(y)

p(v − y)
,

so that, by Lemma 6.6,

q(f(y)− f(x))

p(y − x)
≤ max

{
q(f(x)− f(u))

p(x− u)
,
q(f(v)− f(y))

p(v − y)

}
≤ L .

If p(x− y) = 0 then

p(y − xi) ≤ p(y − x) + p(x− xi) < ri
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implying x, y ∈ Ui and

q(f(x)− f(y)) ≤ Lipi(x− y) ≤ Lp(x− y).

�

Taking into account Proposition 4.7 and Theorem 6.4, one obtains the following
consequence.

Corollary 6.8. Let f : Ω ⊆ Rn → R be a convex function, where the set Ω is
open and convex. Then f is locally Lipschitz on Ω and Lipschitz on every compact
subset of Ω.

6.2. The order-Lipschitz property. Papageorgiou ([26, 27]) considered a no-
tion of Lipschitzness for convex vector functions related to the order. Let X be
a normed space and Y a normed lattice, Ω ⊂ X and f : Ω → Y . One says that
f is o-Lipschitz on a subset Z of Ω if there exists y ≥ 0 in Y such that

|f(z)− f(z′)| ≤ y‖z − z′‖ , (6.3)

for all z, z′ ∈ Z.
Notice that an o-Lipschitz function is Lipschitz. Indeed, from (6.3),

‖f(z)− f(z′)‖ ≤ ‖y‖‖z − z′‖ ,
for all z, z′ ∈ Z, because in a normed lattice |x| ≤ |x′| implies ‖x‖ ≤ ‖x′‖.

Theorem 6.9. Let X be a normed space, Y a normed lattice, Ω ⊂ X open and
convex and f : Ω → Y a function convex with respect to the order of Y . If f is
upper o-bounded on a neighborhood of a point x0 ∈ Ω, then f is locally o-Lipschitz
on Ω.

The proof will follow from an analog of Proposition 6.5.

Lemma 6.10. Under the hypotheses of Theorem 6.9, if R > 0 is such that
V = B[x0, R] ⊂ Ω and, for some z ≥ 0 in Y ,

|f(x)| ≤ z , (6.4)

for all x ∈ V , then for every 0 < r < R

|f(x)− f(y)| ≤ 2z

R− r
‖x− y‖ , (6.5)

for all x, y ∈ U := B[x0, r].

Proof. The proof is similar to that of Proposition 6.5, so we only sketch it.
Let x 6= y in U . Since ‖x − y‖ > 0 we have to consider only Case 2 of the

corresponding proof. Like there, let a < 0 and b > 1 be such that

‖x− x0 + a(y − x)‖ = R = ‖x− x0 + b(y − x)‖ .
Let u := x + a(y − x) and v := x + b(y − x). Putting p(·) = ‖ · ‖ in the

inequalities (6.1), one obtains

‖u− x‖ ≥ R− r and ‖v − y‖ ≥ R− r . (6.6)
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Appealing to (3.4), it follows

f(x)− f(u)

‖x− u‖
≤ f(y)− f(x)

‖y − x‖
≤ f(v)− f(y)

‖v − y‖
. (6.7)

By hypothesis and the inequalities (6.6),

|f(x)− f(u)|
‖x− u‖

≤ 2z

R− r
and

|f(v)− f(y)|
‖v − y‖

≤ 2z

R− r
,

so that

|f(y)− f(x)|
‖y − x‖

≤ 2z

R− r
⇐⇒ |f(y)− f(x)| ≤ 2z

R− r
‖y − x‖ .

�

Proof of Theorem 6.9. By Proposition 5.1 the function f is locally o-bounded on
Ω. Therefore, for any x ∈ Ω there exist R > 0 and y ≥ 0 such that (6.4) holds.
By Lemma 6.10 the function f satisfies (6.5), that is, it is o-Lipschitz on B[x, r],
for every r ∈ (0, R). �

Remark 6.11. We have used some properties of the order relations in a vector
lattice (see Section 2). For instance at the end of the proof of Lemma 6.10 we
have used the following property

u ≤ v ≤ w ⇒ |v| ≤ |u| ∨ |w| ,
(see the proof following the relations (2.2)), applied to the inequalities (6.7).

7. Equi-Lipschitz properties of families of continuous convex
mappings

Let (X,P ), (Y,Q) be real locally convex spaces, where P,Q are directed fam-
ilies of seminorms generating the topologies, Ω an open convex subset of X and
F a family of functions from Ω to Y . The family F is called equi-Lipschitz on a
subset A of Ω if for every q ∈ Q there are p = pq ∈ P and a number Lq ≥ 0 such
that

q(f(x)− f(y)) ≤ Lqp(x− y)

for all x, y ∈ A and all f ∈ F. The family F is called locally equi-Lipschitz on Ω
if each point x ∈ Ω has a neighborhood Ux ⊂ Ω such that F is equi-Lipschitz
on Ux.

The family F is called pointwise bounded on Ω if, for every q ∈ Q,
sup{q(f(x)) : f ∈ F} <∞

holds for each x ∈ Ω.
A barrel in a locally convex space (X,P ) is an absorbing absolutely convex

and closed subset. The locally convex space X is called barrelled if each barrel
is a neighborhood of 0 in X. Any Baire LCS, hence any complete semimetrizable
LCS, is a barrelled space. Notice that there exist barrelled locally convex spaces
and barrelled normed spaces that are not Baire, see [29, p. 100] and [31], respec-
tively. An example of an incomplete normed space that is Baire was given by
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Libor Veselý, see

http://users.mat.unimi.it/users/libor/AnConvessa/Baire-incompleto.pdf

The following result was proved in [17]. The proof given here is adapted from
[12].

Theorem 7.1. Let (X,P ) be a barrelled locally convex space, (Y,Q) a locally
convex space ordered by a normal cone C and Ω an open convex subset of X.

If F is a pointwise bounded family of continuous convex functions from Ω to Y
then F is locally equi-Lipschitz on Ω.

Furthermore, the family F is equi-Lipschitz on every compact subset of Ω.

Proof. Suppose that the seminorms in Q are the Minkowski functionals of mem-
bers of a neighborhood basis B of 0 ∈ Y formed of absolutely convex C-full
sets.

Let x0 ∈ Ω, W ∈ B and let q ∈ Q be the Minkowski functional of the
set W ∈ B. We show that there are p ∈ P, R > 0 and β > 0 such that
V := x0 +RBp ⊂ Ω and

q(f(x)) ≤ β (7.1)

for all x ∈ V and all f ∈ F. Taking into account Proposition 6.5, the relation
(7.1) yields that, for any 0 < r < R, we have

q(f(x)− f(y)) ≤ 2β

R− r
p(x− y)

for all x, y ∈ x0 + rBp and all f ∈ F.
Let

B = {u ∈ X : x0 + u ∈ Ω and f(x0 + u)− f(x0) ∈
1

2
W − C ∀f ∈ F}

A simple verification shows that B is a convex subset of X. We show that B is
also absorbing. Since Ω is open, for every x ∈ X there exists α > 0 such that
x0 + αx ∈ Ω. Then, by the convexity of Ω, for any t, 0 < t < 1, x0 + tαx ∈ Ω
and

f(x0 + tαx) = f((1− t)x0 + t(x0 + αx)) ≤ (1− t)f(x0) + tf(x0 + αx)

implying
f(x0 + tαx)− f(x0) ≤ t(f(x0 + αx)− f(x0)). (7.2)

Since the family F is pointwise bounded there exists t0, 0 < t0 < 1, such that

t0(f(x0 + αx)− f(x0)) ∈
1

2
W

for all f ∈ F, so that by (7.2),

f(x0 + t0αx)− f(x0) =

= [f(x0 + t0αx)− f(x0)− t0(f(x0 + αx)− f(x0))] +

+ t0(f(x0 + αx)− f(x0)) ∈ −C +
1

2
W ,
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for all f ∈ F, showing that t0αx ∈ B. Consequently, the set B is a barrel in X
and, since X is barrelled, B is a neighborhood of 0 ∈ X.

Take R > 0 and p ∈ P such that V := x0 + RBp ⊂ x0 + B. For f ∈ F
and u ∈ RBp ⊂ B, there exists a net (ui)i∈I in B converging to u. The relations
f(x0 + ui)− f(x0) ∈ 2−1W − C and the continuity of f imply

f(x0 + u)− f(x0) = lim
i

(f(x0 + ui)− f(x0)) ∈ cl(
1

2
W − C) ⊂ W − C .

Similarly

f(x0 − u)− f(x0) ∈ W − C.

By the convexity of f

2f(x0) ≤ f(x0 + u) + f(x0 − u) ⇐⇒ f(x0 + u)− f(x0) ≥ f(x0)− f(x0 − u)

=⇒ f(x0 + u)− f(x0) ∈ f(x0)− f(x0 − u) + C .

But then

f(x0 + u)− f(x0) ∈ −W + C + C = W + C .

Therefore

f(x0 + u)− f(x0) ∈ (W − C) ∩ (W + C) = W ⊂ Bq ,

i.e.

q(f(x)− f(x0)) ≤ 1 ∀x ∈ V and ∀f ∈ F .
Hence

q(f(x)) ≤ 1 + q(f(x0)) ≤ 1 + sup{q(f(x0)) : f ∈ F} =: β.

for all x ∈ V and all f ∈ F.
The proof of the fact that F is equi-Lipschitz on every compact subset of Ω

proceeds like in the case of one function, taking into account that, by (7.1), we can
add ”for all f ∈ F” to each of the relations used in the proof of the corresponding
assertion of Theorem 6.4. �

8. Convex functions on metrizable TVS

In this section, we shall discuss the Lipschitz properties of convex functions on
metrizable TVS.

As it was shown in [13] continuous convex functions are also locally Lipschitz
with respect to some translation invariant metrics.

For 0 < p < 1 consider the linear space `p of all sequences x = (xk) of real
numbers such that

∑∞
k=1 |xk|p <∞. The function

d(x, y) =
∞∑

k=1

|yk − xk|p

is a translation invariant (i.e. d(x + z, y + z) = d(x, y), ∀x, y, z ∈ X) metric on
`p generating a linear topology on `p.
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Proposition 8.1. Let Ω be an open convex subset of the space `p, 0 < p < 1. If
f : Ω → R is continuous and convex, then f is locally Lipschitz on Ω.

Proof. For x0 ∈ Ω there exists r > 0 and a > 0 such that |f(x)| ≤ a for all
x ∈ U, where U := {x ∈ `p : d(x0, x) ≤ r} ⊂ Ω is a neighborhood of x0. Let
V := {x ∈ `p : d(x0, x) ≤ r/4} ⊂ U . For x, y ∈ V, x 6= y, we have d(x, y) ≤ r/2
and

d

(
r

2d(x, y)
(y − x), 0

)
=

(
r

2d(x, y)

)p

d(y − x, 0)

=

(
r

2d(x, y)

)p

d(x, y) =
(r

2

)p

(d(x, y))1−p ≤ r

2
.

The element z := y + r (d(x, y))−1 (y − x) belongs to U because

d(z − x0, 0) ≤ d(y − x0, 0) + d

(
r

2d(x, y)
(y − x), 0

)
≤ r

4
+
r

2
< r.

It follows

y =
2d(x, y)

2d(x, y) + r
z +

r

2d(x, y) + r
x ,

so that, by the convexity of f ,

f(y) ≤ 2d(x, y)

2d(x, y) + r
f(z) +

r

2d(x, y) + r
f(x) ,

implying

f(y)− f(x) ≤ 2d(x, y)

2d(x, y) + r
(f(z)− f(x)) ≤ 4a

2d(x, y) + r
d(x, y) ≤ 4a

r
d(x, y)

By symmetry

f(x)− f(y) ≤ 4a

r
d(x, y) ,

so that

|f(y)− f(x)| ≤ 4a

r
d(x, y) .

Consequently f is Lipschitz on V with L = (4a)/r. �

Remark 8.2. The dual of the space `p, 0 < p < 1, is the space `∞ of all bounded
sequences, the duality α 7→ ϕα ∈ (`p)∗ for α = (αk) ∈ `∞, being realized by the
formula

ϕα(x) =
∞∑

k=1

αkxk, for x = (xk) ∈ `p ,

(see [22, p. 110]).
Consequently, for 0 < p < 1 every space `p contains a good supply of nonempty

open convex sets and non identically null continuous convex functions.
In contrast, (Lp[0, 1])∗ = {0} for every 0 < p < 1, so that Lp[0, 1] does not

contain nonempty open convex subsets and the only continuous convex function
on Lp[0, 1] is f ≡ 0 (see [30, §1.47]).
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A similar result holds in metrizable LCS. Let (X, τ) be a Hausdorff LCS with
the topology generated by the countable directed family (pn)n∈N of seminorms.
It is known that the topology of X is metrizable and

d(x, y) =
∞∑

n=1

1

2n
· pn(x− y)

1 + pn(x− y)
, x, y ∈ X , (8.1)

is a translation invariant metric on X generating the topology τ .

Proposition 8.3. Let X be a metrizable LCS and Ω an open convex subset of
X. If f : Ω → R is a continuous convex function, then f is locally Lipschitz on
Ω with respect to the metric (8.1)

Proof. Let x0 ∈ Ω. By Theorem 6.4 there exists a convex neighborhood U ⊂ Ω
of x0, m ∈ N and Lm > 0 such that

|f(x)− f(y)| ≤ Lmpm(x− y) ,

for all x, y ∈ U . Let r > 0 be such that V := {x ∈ X : d(x0, x) ≤ r} ⊂ U ∩ {x ∈
X : pm(x− x0) ≤ 1}. Then, for any x, y ∈ V, pm(x− y) ≤ 2 and

|f(x)− f(y)| ≤Lmpm(x− y) = 2mLm(1 + pm(x− y)) · 1

2m
· pm(x− y)

1 + pm(x− y)

≤3 · Lm · 2m ·
∞∑

k=1

1

2k
· pk(x− y)

1 + pk(x− y)
= L · d(x, y) ,

where L := 3 · Lm · 2m �

Remark 8.4. The fact that the metric d is translation invariant is essential for
the validity of Propositions 8.1 and 8.3.

Indeed, on X = R the metric d(x, y) = |x3 − y3|, x, y ∈ R, generates the usual
topology on R. The function f(x) = x, x ∈ R, is continuous and convex on R,
but it is not Lipschitz around 0, because

|f(x)− f(y)| = 1

x2 + xy + y2
· |x3 − y3| for (x, y) 6= (0, 0) ,

and

lim
(x,y)→(0,0)

1

x2 + xy + y2
= +∞ .
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