A formulation of the Jacobi coefficients $c^l_j(\alpha, \beta)$ via Bell polynomials

Document Type: Original Article


Department of Mathematics, University of Sussex


The Jacobi polynomials $(\mathscr{P}^{(\alpha, \beta)}_k: k\ge0, \alpha, \beta>-1)$ are deeply intertwined with the Laplacian on compact rank one symmetric spaces. They represent the {\it spherical} or zonal functions and as such constitute the main ingredients in describing the spectral measures and spectral projections associated with the Laplacian on these spaces. In this note we strengthen this connection by showing that a set of spectral and geometric quantities associated with Jacobi operator fully describe the Maclaurin coefficients associated with the heat and other related Schwartzian kernels and present an explicit formulation of these quantities using the Bell polynomials.