Singular Riesz measures on symmetric cones

Document Type: Original Article


1 Sfax university

2 Sfax University


‎A fondamental theorem due to Gindikin says that the‎ ‎generalized power $\Delta_{s}(-\theta^{-1})$ defined on a symmetric‎ ‎cone is the Laplace transform of a positive measure $R_{s}$ if and ‎only if $s$ is in a given subset $\Xi$ of $\Bbb{R}^{r}$‎, ‎where $r$‎ ‎is the rank of the cone‎. ‎When $s$ is in a well defined part of‎ ‎$\Xi$‎, ‎the measure $R_{s}$ is absolutely continuous with respect to‎ ‎Lebesgue measure and has a known expression‎. ‎For the other elements‎ ‎$s$ of $\Xi$‎, ‎the measure $R_{s}$ is concentrated on the boundary of‎ ‎the cone and it has never been explicitly determined‎. ‎The aim of the‎ ‎present paper is to give an explicit description of the measure‎ ‎$R_{s}$ for all $s$ in $\Xi$‎. ‎The work is motivated by the‎ ‎importance of these measures in probability theory and in statistics‎ ‎since they represent a generalization of the class of measures‎ ‎generating the famous Wishart probability distributions‎.