SINGULAR RIESZ MEASURES ON SYMMETRIC CONES

ABDELHAMID HASSAIRI1* and SALLOUHA LAJMI2

Communicated by G. Olafsson

ABSTRACT. A fundamental theorem due to Gindikin [Russian Math. Surveys, 29 (1964), 1-89] says that the generalized power $\Delta_s(-\theta^{-1})$ defined on a symmetric cone is the Laplace transform of a positive measure R_s if and only if s is in a given subset Ξ of \mathbb{R}^r, where r is the rank of the cone. When s is in a well defined part of Ξ, the measure R_s is absolutely continuous with respect to Lebesgue measure and has a known expression. For the other elements s of Ξ, the measure R_s is concentrated on the boundary of the cone and it has never been explicitly determined. The aim of the present paper is to give an explicit description of the measure R_s for all s in Ξ. The work is motivated by the importance of these measures in probability theory and in statistics since they represent a generalization of the class of measures generating the famous Wishart probability distributions.

REFERENCES

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Jun. 21, 2017; Accepted: Sep. 12, 2017.

*Corresponding author.

2010 Mathematics Subject Classification. Primary 46G12; Secondary 28A25.

Key words and phrases. Jordan algebra, symmetric cone, generalized power, Laplace transform, Riesz measure.

1Department of Mathematics, Faculty of Sciences Sfax, P. O. Box 1171, Sfax 3000, Tunisia.
E-mail address: Abdelhamid.Hassairi@fss.rnu.tn

2Department of Computer Science and Mathematics, ENIS, Route Soukra, Sfax 3000, Tunisia.
E-mail address: sallouha.lajmi@enis.rnu.tn