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Abstract. As generalizations of the arithmetic and the geometric means, for

positive real numbers a and b, the power difference mean Jq(a, b) =
q

q+1
aq+1−bq+1

aq−bq ,

the Lehmer mean Lq(a, b) = aq+1+bq+1

aq+bq and the Heron mean Kq(a, b) = (1 −
q)
√
ab+ q a+b

2 are well known.
In this paper, concerning our recent results on estimations of the power

difference mean, we obtain the greatest value α = α(q) and the least value
β = β(q) such that the double inequality for the Lehmer mean

Kα(a, b) < Lq(a, b) < Kβ(a, b)

holds for any q ∈ R. We also obtain an operator version of this estimation.
Moreover, we discuss generalizations of the results on estimations of the power
difference and the Lehmer means.This argument involves refined Heinz opera-
tor inequalities by Liang and Shi.
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15. V. E. S. Szabó, A class of matrix monotone functions, Linear Algebra Appl. 420 (2007),
79–85.

16. Y. Udagawa, S. Wada, T. Yamazaki, and M. Yanagida, On a family of operator means
involving the power difference means, Linear Algebra Appl. 485 (2015), 124–131.

17. W.-F. Xia, S.-W. Hou, G.-D. Wang, and Y.-M. Chu, Optimal one-parameter mean bounds
for the convex combination of arithmetic and geometric means, J. Appl. Anal 18 (2012),
197–207.

18. L. Zou, Matrix versions of the classical Pólya inequality, ScienceAsia 39 (2013), no. 2,
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