• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Advances in Operator Theory
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 4 (2019)
Volume Volume 3 (2018)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 2 (2017)
Volume Volume 1 (2016)
Liu, N., Luo, W., Xu, Q. (2018). The polar decomposition for adjointable operators on Hilbert $C^*$-modules and centered operators. Advances in Operator Theory, 3(4), 855-867. doi: 10.15352/aot.1807-1393
Na Liu; Wei Luo; Qingxiang Xu. "The polar decomposition for adjointable operators on Hilbert $C^*$-modules and centered operators". Advances in Operator Theory, 3, 4, 2018, 855-867. doi: 10.15352/aot.1807-1393
Liu, N., Luo, W., Xu, Q. (2018). 'The polar decomposition for adjointable operators on Hilbert $C^*$-modules and centered operators', Advances in Operator Theory, 3(4), pp. 855-867. doi: 10.15352/aot.1807-1393
Liu, N., Luo, W., Xu, Q. The polar decomposition for adjointable operators on Hilbert $C^*$-modules and centered operators. Advances in Operator Theory, 2018; 3(4): 855-867. doi: 10.15352/aot.1807-1393

The polar decomposition for adjointable operators on Hilbert $C^*$-modules and centered operators

Article 9, Volume 3, Issue 4 - Serial Number 10, Autumn 2018, Page 855-867  XML PDF (127.91 K)
Document Type: Original Article
DOI: 10.15352/aot.1807-1393
Authors
Na Liu; Wei Luo; Qingxiang Xu email orcid
‎Shanghai Normal University‎, ‎PR China
Receive Date: 27 June 2018,  Revise Date: 12 July 2018,  Accept Date: 12 July 2018 
Abstract
‎Let $T$ be an adjointable operator between two Hilbert $C^*$-modules and $T^*$ be the adjoint operator of $T$‎. ‎The polar decomposition of $T$ is characterized as $T=U(T^*T)^\frac12$ and $\mathcal{R}(U^*)=\overline{\mathcal{R}(T^*)}$‎, ‎where $U$ is a partial isometry‎, ‎$\mathcal{R}(U^*)$ and $\overline{\mathcal{R}(T^*)}$ denote the range of $U^*$ and the norm closure of the range of $T^*$‎, ‎respectively‎. ‎Based on this new characterization of the polar decomposition‎, ‎an application to the study of centered operators is carried out.
Keywords
Hilbert $C^*$-module; polar decomposition; centered operator
Main Subjects
47. Operator Theory (Main Subject)
Statistics
Article View: 122
PDF Download: 93
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.