Partial isometries and a general spectral theorem

Document Type: Original Article

Author

‎Budapest University of Technology and Economics, Hungary

Abstract

We prove a general spectral theorem for an arbitrary densely defined closed linear operator $T$ between complex Hilbert‎ ‎spaces $H$ and $K$‎. ‎The corresponding operator measure is partial isometry valued‎, ‎and has properties similar to those of the resolution of‎ ‎the identity of a nonnegative self-adjoint operator‎. ‎The main method is the use of the canonical factorization (polar decomposition) obtained‎ ‎by v‎. ‎Neumann and Murray‎. ‎The uniqueness of the generalized resolution of the identity is studied together with the properties of a (non-multiplicative)‎ ‎functional calculus‎. ‎The properties of this generalized resolution of the identity are also investigated‎.

Keywords