A VARIATIONAL INEQUALITY THEORY
FOR CONSTRANGED PROBLEMS
IN REFLEXIVE BANACH SPACES

T. M. ASFAW

Communicated by D. M. Pellegrino

Abstract. Let X be a real locally uniformly convex reflexive Banach space with the locally uniformly convex dual space X^*, and let K be a nonempty, closed, and convex subset of X. Let $T : X \supseteq D(T) \rightarrow 2^{X^*}$ be maximal monotone, let $S : K \rightarrow 2^{X^*}$ be bounded and of type $(S_+$), and let $C : X \supseteq D(C) \rightarrow X^*$ with $D(T) \cap D(\partial \phi) \cap K \subseteq D(C)$. Let $\phi : X \rightarrow (-\infty, \infty]$ be a proper, convex, and lower semicontinuous function. New existence theorems are proved for solvability of variational inequality problems of the type VIP$(T+S+C, K; \phi; f)$ if C is compact and VIP$(T+C, K; \phi; f)$ if T is of compact resolvent and C is bounded and continuous. Various improvements and generalizations of the existing results for $T+S$ and ϕ are obtained. The theory is applied to prove existence of solution for nonlinear constrained variational inequality problems.

References

Copyright 2019 by the Tusi Mathematical Research Group.
Date: Received: Sep. 26, 2018; Accepted: Oct. 14, 2018.
2010 Mathematics Subject Classification. Primary 47H20; Secondary 47H14.
Key words and phrases. Variational inequality, compact resolvent, constrained problems, elliptic and parabolic problems.