For a matrix $A \in \mathbb{R}^{n \times n}$ whose off-diagonal entries are nonpositive, there are several well-known properties that are equivalent to A being an invertible M-matrix. One of them is the positive stability of A. A generalization of this characterization to partially ordered Banach spaces is considered in this article. Relationships with certain other equivalent conditions are derived. An important result on singular irreducible M-matrices is generalized using the concept of M-operators and irreducibility. Certain other invertibility conditions of M-operators are also investigated.

REFERENCES

6. K. Fan, Some inequalities for matrices A such that $A-I$ is positive definite or an M-matrix, Linear Multilinear Algebra 32 (1992), 89–92.

Copyright 2019 by the Tusi Mathematical Research Group.
Date: Received: Jun. 13, 2018; Accepted: Oct. 27, 2018.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 47B60; Secondary 15B48, 46B40, 47B65.
Key words and phrases. M-operator, positive stability, invertibility, irreducibility.

1Institute for Analysis, Department of Mathematics, Technical University of Dresden, D - 01062 Dresden, Germany.
E-mail address: anke.kalauch@tu-dresden.de

2Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India.
E-mail address: mathlavi@gmail.com, kcskumar@iitm.ac.in